Modular addition Introduction to Rings

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Video 2/1 Recorded: September 19, 2013

Prof Hans Georg Schaathun

Modular addition

Crypto 2/1 1 / 5

The modulus operator is a cornerstone for cryptography.

Integer division

$$m = n \cdot q + r, \quad r < q$$

- We get the remainder term r
- This is the modulus operator
 - $m \mod n = r$
- $r \in \mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$

We will discuss the properties and operations on the set \mathbb{Z}_n .

Crypto 2/1

2/5

• A binary operation on a set S is a function

 $f: S \times S \rightarrow S$

• For instance, addition (x + y)

 $+:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$

- Addition works on many different sets,
 - Rational numbers $+ : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$
 - Integers $+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$
 - Natural numbers $+ : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

Crypto 2/1

3/5

Closed set

We say that $\mathbb Z$ is closed under addition

 $\forall x, y \in \mathbb{Z}, x + y \in \mathbb{Z}.$

- What about \mathbb{Z}_{26} ?
- 14, 15 $\in \mathbb{Z}_{26}$ but 14 + 15 = 29 $\notin \mathbb{Z}_{26}$
- \mathbb{Z}_{26} is not closed under integer addition.
- \mathbb{Q} , \mathbb{N} , and \mathbb{R} (like \mathbb{Z}) are closed under addition.

Definition

A set *S* is said to be closed under an operation *O* if, for all $x, y \in S$, we have $xOy \in S$.

Addition in \mathbb{Z}_n

• Addition is also defined in \mathbb{Z}_n

$$+_{n}:\mathbb{Z}_{n}\times\mathbb{Z}_{n}\to\mathbb{Z}_{n},$$
(1)

$$x +_n y = x + y \mod n \tag{2}$$

• For instance, generalised Cæsar's cipher is given by

$$\boldsymbol{e}_k(\boldsymbol{x}) = \boldsymbol{x} +_{26} \boldsymbol{k} \tag{3}$$

Crypto 2/1

5/5

• \mathbb{Z}_n is closed under $+_n$

- we refer to $+_n$ as addition in \mathbb{Z}_n
- we could even write + for $+_n$