Modular multiplication and rings Introduction to Rings

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Video 2/2 Recorded: September 19, 2013

Prof Hans Georg Schaathun

Modular multiplication and rings

Crypto 2/2 1 / 6

Binary operations

• Common binary operations on a set S:

$$\cdot, + : S \times S \to S$$

• For instance, addition

$$+_n : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n,$$

 $x +_n y = x + y \mod n$

Definition

A set *S* is said to be closed under an operation *O* if, for all $x, y \in S$, we have $xOy \in S$.

Multiplication modulo n

We can also have multiplication in \mathbb{Z}_{26} .

$$x \times_{26} y = xy \mod 26$$

- Z_{26} is closed under \times_{26}
- We can also have exponentiation

$$x^n = x \times_{26} x \times_{26} \dots \times_{26} x$$
, (*n* times)

Prof Hans Georg Schaathun

Addition $+_{26}$ and multiplication \times_{26} in \mathbb{Z}_{26} work largely as we are used to in \mathbb{R} .

- Commutative $x +_{26} y = y +_{26} x$ and $x \times_{26} y = y \times_{26} x$
- Associative $x +_{26} (y +_{26} z) = (y +_{26} x) +_{26} z$ and $x \times_{26} (y \times_{26} z) = (x \times_{26} y) \times_{26} z$
- Distributive $x \times_{26} (y +_{26} z) = (x \times_{26} y) +_{26} (x \times_{26} z)$

 \mathbb{Z}_{26} is an example of a ring, just like \mathbb{Z} , \mathbb{R} , and \mathbb{Q} . We will discuss the precise properties rings later.

• • • • • • • • • • • •

Affine cipher

- We can use both addition and multiplication for the encryption function.
- Take a key $(k_1, k_2) \in \mathbb{Z}_{26}^2$
- Take a letter represented as $x \in \mathbb{Z}_{26}$, and encrypt

$$e_{k_1,k_2}(x) = k_1 \times_{26} x +_{26} k_2$$

- E.g. (k₁, k₂) = (3, 1)
 Plaintext: hi
 - hi \mapsto (7,8) • 7 \mapsto 3 \times_{26} 7 $+_{26}$ 1 = 22 • 8 \mapsto 3 \times_{26} 8 $+_{26}$ 1 = 25 • (22,25) \mapsto wz
- Ciphertext: wz

Exercise

Exercise

Encrypt the message new idea, using the affine cipher with each of the following keys:

Exercise

Encrypt the message an idea, using the encryption function $e_{k_1,k_2}(x) = k_1 \times_{26} x +_{26} k_2$, using the key $(k_1,k_2) = (2,2)$. Comment on the result.