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The four arithmetic operations

We have studied Zn = {0,1,2, . . . ,n − 1}
Usual arithmetic operations

Addition and Multiplication

We have mentioned that Zn is a ring.
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Definition

A set R, with operations + and · is called a ring if the following
axioms hold

1 (x + y) + z = x + (y + z) (associtativity of addition)
2 x + y = y + x (commutativity of addition)
3 There is an element 0 ∈ R such that x + 0 = x for all x ∈ R
4 For any x ∈ R there is an element (−x) ∈ R, such that

x + (−x) = 0.
5 There is an element 1 such that x · 1 = 1 · x = x for all x ∈ R
6 (x · y) · z = x · (y · z) (associtativity of multiplication)
7 x · y = y · x (commutativity of multiplication)
8 x · (y + z) = x · y + x · z (distributive law)
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What the ring is missing

We cannot divide in general
The inverse x−1 is defined such that x · x−1 = 1

may exist for some x and not for others
When 1/x = x−1 is defined,

y/x = y · x−1 (by definition)
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The inverse

An element x is either
zero divisor
invertible

Either there is
y such that x · y = 0, or
y such that x · y = 1

In a modular ring Zn
k > 1 divides x and n: zero divisor
Otherwise: invertible
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Example

Exercise
Which are the zero divisors in Z6?
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Exercise
Consider the English alphabet Z26 and the Scandinavian one Z29.
What are the zero elements in each of the rings?
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