Rings Definition and Summary

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Video 3/1 Recorded: September 30, 2013

Prof Hans Georg Schaathun

Crypto 3/1 1 / 7

The four arithmetic operations

- We have studied $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$
- Usual arithmetic operations
 - Addition and Multiplication
- We have mentioned that \mathbb{Z}_n is a ring.

Definition

• A set *R*, with operations + and · is called a ring if the following axioms hold

(x + y) +
$$z = x + (y + z)$$
 (associtativity of addition)

- 2 x + y = y + x (commutativity of addition)
- So There is an element $0 \in R$ such that x + 0 = x for all $x \in R$
- For any $x \in R$ there is an element $(-x) \in R$, such that x + (-x) = 0.
- **(5)** There is an element 1 such that $x \cdot 1 = 1 \cdot x = x$ for all $x \in R$
- **(** $x \cdot y$) $\cdot z = x \cdot (y \cdot z)$ (associtativity of multiplication)
- $x \cdot y = y \cdot x$ (commutativity of multiplication)
- 3 $x \cdot (y + z) = x \cdot y + x \cdot z$ (distributive law)

Crypto 3/1

3/7

What the ring is missing

- We cannot divide in general
- The inverse x^{-1} is defined such that $x \cdot x^{-1} = 1$
 - may exist for some x and not for others
- When $1/x = x^{-1}$ is defined,

•
$$y/x = y \cdot x^{-1}$$
 (by definition)

Crypto 3/1

4/7

The inverse

- An element x is either
 - zero divisor
 - invertible
- Either there is
 - *y* such that $x \cdot y = 0$, or
 - y such that $x \cdot y = 1$
- In a modular ring \mathbb{Z}_n
 - k > 1 divides x and n: zero divisor
 - Otherwise: invertible

Crypto 3/1

5/7

Example

Exercise

Which are the zero divisors in \mathbb{Z}_6 ?

Exercise

Consider the English alphabet \mathbb{Z}_{26} and the Scandinavian one \mathbb{Z}_{29} . What are the zero elements in each of the rings?

