
Exercise Set Part 3

Algorithms

Hans Georg Schaathun

10th August 2015

1 Thursday 18 September

Exercise 1.1 (Rosen p. 204, ex. 2) Recall the characteristics Input, Output, De�n-

iteness, Correctness, Finiteness, E�ectiveness, and Generality, as de�ned in the video,

or in Rosen's book p. 195.

Consider the following algorithms, and determine for each one, which characteristics

they posess and which they lack.

a)

1 procedure doub l e (n : p o s i t i v e integer)

2 while n > 0
3 n := 2n

b)

1 procedure d i v i d e (n : p o s i t i v e integer)

2 while n > 0
3 m := 1/n
4 n := n− 1

c)

1 procedure sum(n : p o s i t i v e integer)

2 sum := 0

3 while i < 10
4 sum := sum + i

d)

1 procedure choose (a, b : p o s i t i v e integer)

2 x := e i t h e r a or b

1

Exercise 1.2 How many steps are required to move a Tower of Hanoi of ...

1. 1 disk?

2. 2 disks?

3. 3 disks?

4. 5 disks?

5. n disks? (this is di�cult; we return to it later)

Exercise 1.3 (Rosen p. 204, ex. 3) Devise an algorithm which �nds the sum of all

the integers in a list.

Exercise 1.4 (Video Solution �Exercise Example�) Devise an algorithm which takes

a sorted array as input, and outputs an array of all repeated elements in the input.

Exercise 1.5 Devise an algorithm which �nds the common elements in two sorted ar-

rays. The output should be an array.

2 Friday 19 September

Exercise 2.1 Consider the following linear search algorithm:

1 procedure f i n d (k ,A1, A2, . . . , An)

2 for i := 1, 2, . . . , n
3 i f k = Ai , r e tu rn i

It �nds the index of an element k in an array A1, A2, . . . , An. Rewrite the algorithm

using recursion instead of a loop.

The trick to solve this problem recursively follows many known problems, such as how

to eat an elephant? First you take one bite, then you eat the rest of the elephant. Or

you could think of searching for your keys. First you check one pocket, then (if you don't

�nd them) you check the rest of your pockets.

Speci�cally, searching for an element in a list, �rst you check the �rst element A1 and

see if it matches. If it does, you are done. Otherwise, you check the rest of the elements

(A2, A3, . . . , An).
Solution:

1 function f i nd (k ,A1, A2, . . . , An)

2 i f n = 0 , e r r o r

3 i f A1 = k , r e turn 1
4 re turn 1 + find(k,A2, A3, . . . , An)

Exercise 2.2 Consider the following list of numbers: [6, 2, 5, 4, 7, 1], and recall the al-

gorithms for selection sort and insertion sort in the lectures.

2

1. Demonstrated how you sort the numbers step by step using selection sort.

2. Do the same for insertion sort.

Discuss: Is the algorithm recursive as you perform it?

Exercise 2.3 Consider the selection sort algorithm as described in the videos:

1 For i = 1, 2, . . . , n− 1 ,
2 for j = j + 1, j + 2, . . . , n ,
3 i f Ai > Aj , then swap Ai with Aj

Rewrite the selection sort algorithm in recursive form.

Hint: Consider the array at the start of iteration i In the outer loop. Can you identify

a subarray which has to be sorted?

Exercise 2.4 Give recurrence equations to give the number of comparisons required to

sort an n-element array using ...

1. insertion sort.

2. merge sort.

Exercise 2.5 Tabulate the following recurrence for n = 0, . . . , 7:

T (n) = 0.5T (n− 1) + 2, (1)

T (0) = 0 (2)

Can you spot a pattern? Try to guess a closed form expression.

Exercise 2.6 Consider a sorted array A as input. Devise an algorithm which �nds a

given element k in A.

1. Give an iterative formulation of your algorithm,

2. Give a recursive formulation of your algorithm,

3. How many comparisons does your algorithm require to �nd k?

3 Tuesday 23 September

Exercise 3.1 Describe the main steps of a proof by induction.

Exercise 3.2 Consider the following recurrence.

T (n) = 0.5T (n− 1) + 2, (3)

T (0) = 0 (4)

Prove that T (n) = 4− 22−n

3

Exercise 3.3 (Video 3-4-1) Consider a ladder. If you stand on the ground, it is pos-

sible to step onto the �rst rung. If you stand at the nth rung, it is possible to climb onto

the (n + 1)st rung.
Prove that you can climb to the top of the ladder, starting on the ground, using a proof

by contradiction.

Exercise 3.4 Prove that the Tower of Hanoi algorithm is correct.

Exercise 3.5 Prove that the output array of insertion sort (as given in previous videos)

is sorted in increasing order.

4 Thursday 25 September

Exercise 4.1 (Video Solution �Recurrence�) Iterate the recurrence to solve the fol-

lowing equation

T (n) = 1.5T (n− 1) + 1 T (0) = 0.

Use mathematical induction to prove that the solution is correct.

Recall the recurrence for the Tower of Hanoi:

M(n) = 2M(n− 1) + 1 M(1) = 1

Exercise 4.2 Solve the following recurrences, and explain how they di�er from the re-

currence of the Tower of Hanoi (above):

M(n) = 2M(n− 1) + 1 M(0) = 0, (5)

M(n) = 3M(n− 1) + 1 M(1) = 1, (6)

M(n) = M(n− 1) + 2 M(1) = 1, (7)

Exercise 4.3 Solve the following recurrences, and explain how they di�er from the re-

currence of the Tower of Hanoi (above):

T (n) = 0.5T (n− 1) + 2, T (0) = 0 (8)

T (n) = r · T (n− 1) + 1, T (0) = 0 (9)

T (n) = r · T (n− 1) + sn, T (0) = 0 (10)

Exercise 4.4 Prove the following formula for geometric series directly using recursion:

n−1∑
i=0

ri =
1− rn

1− r

Exercise 4.5 Consider the function f(n) = n2 +2n+14. Show that f(n) = O(n2). You
have to review the de�nition of Big-O and �nd suitable constants c and k.

4

5 Friday 26 September

Exercise 5.1 Prove that every natural number greater than 7 is the sum of a non-

negative integer multiple of 3 and a non-negative integer multiple of 5.

Exercise 5.2 Prove that the Strong Principle of Mathematical induction is valid. (You

can use contradiction, following the pattern used in the Video introducing induction.)

Exercise 5.3 (Video on �Structural Induction�) A set S can be de�ned as follows.

Either S is the empty set ∅, or S is the union S = S′ ∪{x} of a set S′ and a singleton

set containing some element x.
Use structural induction to show that the number of possible subsets of S is 2n where

|S| = n is the number of elements of S.

Exercise 5.4 Consider

f(x) =
n∑

i=0

aix
i

Prove that f(x) ∈ O(xn).
In other words, �nd c and k so that |f(x)| ≤ c |g(x)| for x ≥ k.

Solution: Take k = 1 so that xi > xi−1 for all x ≥ k. Then it is easy to see that

f(x) =
n∑

i=0

aix
i ≥ xn

n∑
i=0

ai,

and we can take

c =

n∑
i=0

ai,

to prove that f(x) ∈ O(xn).

Exercise 5.5 What is the Big-O bound on the number of comparisons required by

1. insertion sort

2. selection sort

Solution: 1. (insertion sort) Recall the previous counting exercises and not that

sorting n elements take up to c(n) = n(n− 1)/2 iterations in the worst case. We write

c(n) = 0.5n2 − 0.5n,

and observe that n2 is the dominant term. Thus c(n) ∈ O(n2).
2. Selection sort does the same nested loop as insertion sort, and has the same com-

plexity.

5

	Thursday 18 September
	Friday 19 September
	Tuesday 23 September
	Thursday 25 September
	Friday 26 September

