Uniqueness of Solutions Public Key Cryptography

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Crupto PK 1/4 Recorded: October 8, 2013

Prof Hans Georg Schaathun

Uniqueness of Solutions

Crypto PK 1/4 1 / 6

Lemma

If a has a multiplicative inverse $a^{-1} \in \mathbb{Z}_n$, then the equation

$$a \cdot x = b$$
 in \mathbb{Z}_n

has the unique solution

$$x=a^{-1}\cdot b.$$

We proved the solution, but not uniqueness.

Prof Hans Georg Schaathun

Exercise

Prove that the solution in the lemma is indeed unique.

Exercise

Prove that if a has an inverse a^{-1} , then it is unique.

3/6

Crypto PK 1/4

Prof Hans Georg Schaathun

Uniqueness of Solutions

Uniqueness of inverses

Theorem

If an element in \mathbb{Z}_n has an inverse, then it has exactly one inverse.

Prof Hans Georg Schaathun

Uniqueness of Solutions

Crypto PK 1/4 4 / 6

Uniqueness of Solution

Formalisation

The solution $x = a^{-1}b$ to the equation ax = b in \mathbb{Z}_n is unique.

We formalise

- $\forall x \in \mathbb{Z}_n, ax = b \Rightarrow x = a^{-1}b$
- Iniversal generalistion and indirect proof
 - Let x be any $x \in \mathbb{Z}_n$
 - Assume ax = b
 - Then we can multiply by a^{-1}
 - Thus $a = a^{-1}x$
- This is valid for any x, so the claim holds

Uniqueness of Solution

Formalisation

The solution $x = a^{-1}b$ to the equation ax = b in \mathbb{Z}_n is unique.

We formalise

• $\forall x \in \mathbb{Z}_n, ax = b \Rightarrow x = a^{-1}b$

2 Universal generalistion and indirect proof

- Let x be any $x \in \mathbb{Z}_n$
- Assume ax = b
- Then we can multiply by a^{-1}
- Thus $a = a^{-1}x$
- This is valid for any x, so the claim holds

Crypto PK 1/4

5/6

Uniqueness of Solution

Formalisation

The solution $x = a^{-1}b$ to the equation ax = b in \mathbb{Z}_n is unique.

We formalise

- $\forall x \in \mathbb{Z}_n, ax = b \Rightarrow x = a^{-1}b$
- Oniversal generalistion and indirect proof
 - Let x be any $x \in \mathbb{Z}_n$
 - Assume ax = b
 - Then we can multiply by a^{-1}
 - Thus $a = a^{-1}x$
- This is valid for any x, so the claim holds

- Inverses is the key to solving equations
- Solutions to first order equations are unique
- Inverses are unique