Highest Common Factor

Greatest Common Divisor

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Crupto PK 2/2 Recorded: 8th October 2013

Prof Hans Georg Schaathun

Highest Common Factor

Crypto PK 2/2 1 / 7

The multiplicative inverse

$$ax + ny = 1$$

Prof Hans Georg Schaathun

Highest Common Factor

Crypto PK 2/2 2 / 7

• Factorising is to write an integer as a product

$$n = a_1 \cdot a_2 \cdot \ldots \cdot a_n$$

- where all the *a_i* are integers
- Each factor a_i divides n
 - we write $a_i \mid n$
- Factors are also known as divisors

The non-invertible elements

- If *a* and *n* have a common factor greater than 1,
 - then there is no solution for

ax + ny = 1

- I.e. if *a* and *n* have a common factor > 1,
 - then a is not invertible

HØGSKOLEN | A LESUND Attend Valuatily College (主)・(主)・ 主・のへで Which are the zero divisors in \mathbb{Z}_n ?

- For example, in \mathbb{Z}_{26} .
 - 2 and 13 are zero divisors because $2\cdot 13=26\equiv 0$
 - Multiples of 2: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24
 - Multiples of 13? Well the next one is $26 \equiv 0$.
- The factorisation of *n* is the key.
 - $26 = 2 \cdot 13$
- 2 and 13 are the prime factors
 - their multiples are the zero divisors

Highest Common Factor

• American: greatest common divisor

Definition

The highest common factor of two integers *a* and *b* is the largest number *q* such that $q \mid a$ and $q \mid b$. We write hcf(a, b) = q or gcd(a, b) = q.

• If there is a solution for

$$ax + ny = 1$$

- then hcf(*a*, *n*) = 1
- Is the converse true?

Exercise

Find

- hcf(6,4)
- hcf(7,3)
- hcf(18, 12)
- hcf(19,8)

Prof Hans Georg Schaathun

Highest Common Factor

Crypto PK 2/2 7 / 7