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The foundation of modular arithmetics

Theorem (Euclid’s Division Theorem)
Let n be a positive integer. Then for every integer m, there exist unique
integers q and r so that m = nq + r and 0 ≤ r < n.

Theorem (Restricted version)
Let n be a positive integer. Then for every non-negative integer m,
there exist unique integers q and r so that m = nq + r and 0 ≤ r < n.
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Proof by Contradiction

∀m,∃(q, r),m = nq + r ∧ 0 ≤ r < n

We will use a proof by contradiction
Interested in the smallest counter-example

which we explored introducing mathematical induction
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Proving Euclid
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Proving Euclid
Continued
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Exercise
Prove that Euclid’s Division Theorem is also valid for negative numbers
m.
Hint. Note that if m < 0, then −m > 0 and the restricted version can be
applied to m′ = −m to get numbers q′ and r ′ to solve m′ = nq′ + r ′.
Note that q may be negative, while r cannot, so q = −q′ and r = −r ′ is
not quite the solution. Can you add/subtract a little bit to these
numbers to get 0 ≤ r < n and satisfy Euclid’s theorem?
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