Modular and Non-modular Equations Public Key Cryptography

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Crypto PK 2/1 Recorded: 8th October 2013

Prof Hans Georg Schaathun

Modular and Non-modular Equations

Crypto PK 2/1 1 / 6

Problem

Given an element $a \in \mathbb{Z}_n$, how do we find a^{-1} ?

- Necessary to solve equations
- Necessary to derive RSA keys
- Non-trivial It will take some videos to answer

Rewriting equations

Modular equation

ax = 1 in \mathbb{Z}_n

Congruence

 $ax \equiv 1 \pmod{n}$

Normal equation

$$\exists y \in \mathbb{Z}, ax + ny = 1$$

4 D K 4 B K 4 B K 4

3/6

Crypto PK 2/1

I.e. we solve ax + ny = 1 for x and y

Any modular equation can be thought of in either of these three ways.

Prof Hans Georg Schaathun

Modular and Non-modular Equations

An equation

The multiplicative inverse

Equivalent problems

- **1** Solve ax = 1 for x in \mathbb{Z}_n
- 2 Solve ax + ny = 1 for x and y in \mathbb{Z}

Lemma

The equation ax = 1 has a solution in \mathbb{Z}_n if and only if there exist integers x and y such that

$$ax + ny = 1$$
 in \mathbb{Z} .

Recall, unique solution if a^{-1} exists, and no solution otherwise.

Prof Hans Georg Schaathun

Modular and Non-modular Equations

Crypto PK 2/1

4/6

The multiplicative inverse

Theorem

A number $a \in \mathbb{Z}_n$ has a multiplicative inverse if and only if there are integers x and y such that ax + ny = 1 in \mathbb{Z} .

Proof.

- We knew that a^{-1} if and only if ax = 1 has a solution in \mathbb{Z}_n
- We found that ax = 1 has a solution in \mathbb{Z}_n if and only if ax + ny = 1 has a solution in \mathbb{Z}
- The theorem follow.

Corollary

Using the solution above, $a^{-1} = x \mod n$.

Summary

- Three equivalent problems
 - **(1)** Solve ax = 1 for x in \mathbb{Z}_n
 - 2 Solve ax + ny = 1 for x and y in \mathbb{Z}
 - 3 Find the inverse of a in \mathbb{Z}_n

