
Proving Insertion Sort

Prof. Hans Georg Schaathun

13th September 2013

This documents give typed solutions for both the videos proving insertion sort.

1 Take 1. The iterative case

Exercise 1.1 Prove that the output array of insertion sort (as given in previous videos)

is sorted in increasing order.

To conduct a proof by induction, we need some predicate describing partial success of

the algorith, Loop indices provide a reasonable link. We observe that during the iteration

i = 2 only Ai is moved (and only to the left). Hence elements to the left must already

be sorted, and elements to the right are irrelevant. Thus we can propose the following

invariant P (i):

P (n) := the subarray A1, A2, . . . , An is sorted at the start of iteration n+ 1

If P (n) is true, the entire array is sorted after the last iteration, and the algorithm is

correct. Therefore we prove P (n) by induction.

Firstly, we note that for i = 2, there is a single element to the left, which makes a

trivially sorted subarray. Hence P (1) is true.
To prove P (n) ⇒ P (n + 1), i.e. that the subarray remains sorted after the iteration,

we need to consider the old subarray A1, . . . , An, and the new one, A′1, . . . , A
′
n+1. It is

su�cient to prove that A′j−1 ≤ A′j for any j.
Considering an arbitrary j, there are three possibilities:

1 for i = 2 to n

2 j = i

3 while (j ≥ 2) and (Aj < Aj−1)
4 exchange Aj and Aj−1
5 j = j−1

Table 1: Iterative algorithm.

1



1 procedure I n s e r t i o nSo r t (A1, A2, . . . , An )

2 i f n = 0 , then r e turn []
3 else

4 I n s e r t i o nSo r t (A1, A2, . . . , An−1 )
5 i n s e r t (An i n to A1, A2, . . . , An−1 )

1 procedure i n s e r t (e i n to A1, A2, . . . , An )

2 i f n = 0 , then

3 A1 = e
4 else i f e > An , then

5 An+1 = e
6 else

7 An+1 = An

8 i n s e r t (e i n to A1, A2, . . . , An−1 )

Table 2: Recursive algorithm.

1. A′j−1 and A′j correspond to adjacent elements in the original array. Then A′j−1 ≤ A′j
as required, because the original array was sorted.

2. A′j = An+1 is the new element. In this case A′j ≥ A′j−1, lest the while-condition be

true, and the two elements swapped.

3. A′j−1 = An+1 is the new element. In this case A′j < A′j−1, since the two elements

have been swapped by the while loop.

In all three cases, the sort order is satis�ed, and we conclude that the loop maintains

sort order. InsertionSort is correct by mathematical induction.

2 Take 2. The recursive case

Exercise 2.1 Prove that the output array of insertion sort (see Table 2�3) is sorted in

increasing order.

To conduct a proof by induction, we need some predicate describing partial success

of the algorith, The a variable should be in the set of natural numbers. In the case of

recursion, we can typically link the predicate to the size of the input, as follows:

P (n) := Insertion sort can correctly sort n numbers

If we can prove P (n) for all n, then the algorithm is correct for any (valid) input.

We note that for n = 0 we have an empty array, which is trivially sorted. Hence P (0)
is trivially true. It remains to prove that P (n− 1)⇒ P (n).
In the recursive case, the algorithm performs two operations. First, an InsertionSort

on n− 1 elements, which is correct by the inductive hypothesis P (n− 1); and secondly

2



an insert into a sorted array of n− 1 elements. If we can prove that the insert algorithm

is correct, then correctness of InsertionSort will follow.

The proof of the insert algorithm is simular

Q(n) := The insert algorithm correctly inserts an element into an array of n numbers

Again, we note that Q(0) is true, because n = 0 gives a singleton array which is trivially

sorted. To prove Q(n − 1) ⇒ Q(n), we note that there are two cases. If e is larger

than An, it is larger than every element in A because it is sorted. Thus e is correctly

inserted as a last element. If e is not larger than An, An has to be the last element, at

position n + 1, and e is inserted into the subarray of n − 1 elements. By the inductive

hypothesis, P (n− 1), e is correctly inserted, and P (n) follows for any non-negative n by

mathematical induction.

Since insert is correct, InsertionSort is correct, as argued above.

3


