Equivalence relations Properties of relations

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 1/Session 4/Video 4 Recorded: August 9, 2013

Prof Hans Georg Schaathun

Equivalence relations

Session 1/4 (4) 1 / 12

Recollection

- Recall k-element permutations on a set S
- An ordered list of *k* elements from *S*

Equivalence relations

Two k-element permutations $p_1, p_2 \in P(S)$ are (set) equivalent $p_1 \sim p_2$ if they correspond to the same subset $S_k \subset S$.

ho \sim is a relation

$$R = \{(p_1, p_2) \mid p_1, p_2 \in P_S, p_1 \sim p_2\}$$

- ~ partitions the set P(S) into disjoint classes, each of size k!.
 this allowed us to use the product principle
- p_1 and p_2 are in the same class if and only if $p_1 \sim p_2$

What properties must a relation have to partition the set into disjoint classes?

Note that $p_1 \sim p_1$ for any k-element permutation. We say that \sim is reflexive.

Definition

A relation *R* on *X* is reflexive if xRx for any $x \in X$.

- = is reflexive: x = x
- \leq is reflexive: $x \leq x$
- \subset is reflexive: $x \subset x$
- < is not reflexive: $x \not< x$

If p_1 and p_2 correspond to the same set, tean p_2 and p_1 correspond to the same set.

I.e., if $p_1 \sim p_2$ then $p_2 \sim p_1$, and we say that \sim is symmetric.

Definition

A relation *R* is symmetric if *xRy* whenever *yRx*.

- = is symmetric
- $<, \leq, \subset$ are not symmetric
- 'is a neighbour of' is symmetric (if A is next to B, then B is next to A)

If $p_1 \sim p_2$ and $p_2 \sim p_3,$ can we say anything about p_1 in relation to p_3 ?

- Each *p_i* correspond to a unique set *S_i*
- $p_1 \sim p_2$, so $S_2 = S_1$
- $p_2 \sim p_3$, so $S_3 = S_2 = S_1$
- Thus $p_1 \sim p_3$
- We say that \sim is transitive

Definition

A relation R is transitive if xRy and yRz implies that xRz.

Equivalence relations

Definition (Equivalence Relation)

A relation \sim which is reflexive, symmetric, and transitive is called an equivalence relation.

- Any equivalence relation defines a partitioning
 - into equivalence classes
- Let ~ be an equivalence relation on a set S
 - for $x \in S$ define $[x] = \{y | y \in S, x \sim y\}$
 - [x] is the equivalence class of x
- Each class contains only related elements

Partitioning by equivalence

Theorem

Consider two equivalence classes, for some equivalence relation \sim on a set S:

$$[x] = \{z | z \sim x\}$$
$$[y] = \{z | z \sim y\}$$

Either [x] = [y] or [x] and [y] are disjoint.

Theorem

The union of all the equivalence classes $\{[x]|x \in S\}$ is S.

Thus the equivalence classes form a partioning of S.

Equivalence relations

Session 1/4 (4) 8 / 12

Proof of the second theorem

- By reflexivity, $x \in [x]$
- Hence, for any $x \in S$, $x \in [x] \in \cup \{[x] \mid x \in S\}$
- and the union contains all elements of S

9/12

Equivalence relations

Proof of the first theorem

- Suppose there is $z \in [x] \cap [y]$
- Then $z \sim x$ and $z \sim y$
 - and *x* ~ *z* and *y* ~ *z* by symmetry
 - and $x \sim y$ and $y \sim x$ by transitivity
- Hence $x \in [y]$ and $y \in [x]$
- Consider any $w \in [y]$:
 - Because $x \in [y]$, $x \sim y \sim w$, and $w \in [x]$ by transitivity
 - Thus we conclude that [*y*] ⊂ [*x*]
- By a similar argument $[x] \subset [y]$
 - Hence [*x*] = [*y*]

Session 1/4 (4)

10/12

Any equivalence relation forms a partitioning.

- Often (not always) the equivalence classes have equal size
- In those cases the product principle applies

11/12

Session 1/4 (4)

Which of the following relations are equivalence relations?

- Is a brother of on the set of people
- Is a sibling of' on the set of people
- Is a sister of' on the set of women
- Is a neighbour of on the set of people living in a certain street
- So 'Is a neighbour of' on the set of natural numbers (x and y are neighbours if $x y = \pm 1$).

Justify each answer.

HØGSKOLEN