Modus Ponens

Direct Proof

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 2/Session 4/Video 1 Recorded: 23rd August 2013

Example

- If the sun is shining, then we go swimming
- the sun is shining
- 3 Therefore, we go swimming

```
s := the sun is shining, (1)
```


Example

- If the sun is shining, then we go swimming
- the sun is shining
- 3 Therefore, we go swimming

```
s := the sun is shining, (1)
```

$$t :=$$
we go swimming (2)

Direct Inference

Modus ponens

Principle (Modus Ponens)

From p and $p \Rightarrow q$, we can conclude q.

р	$p \Rightarrow q$	q
Т	Т	Т
Т	F	F
F	Т	Т
F	Т	F

A proof from last session

$$\forall x \in U_2, (q(x) \Rightarrow p(x)) \text{ implies } \forall x \in U_1, p(x)$$

- Consider $x \in U_1$
- We need to prove p(x)
- q(x) (by the definition of U_1)
- Now $x \in U_2$ (by definition of U_1)
- Hence $q(x) \Rightarrow p(x)$ (by left hand side)
- Hence p(x), quod erat demonstrandum

Summary

- A few patterns for valid arguments
- Modus ponents inference is a fundamental one
 - based on the tautology

$$(p \land (p \Rightarrow q)) \Rightarrow q$$

- Symbolic notation, tend to make the pattern clear
 - simple tool to validate an argument