Revision Exercises Week 2 Counting

Hans Georg Schaathun

12th November 2015

Problem 0.1 Consider the relation \sim relating x to y if $x^2 = y^2$.

- 1. Show that \sim is a reflexive relation.
- 2. Show that \sim is a symmetric relation.
- 3. Show that \sim is a transitive relation.

SOLUTION: We verify the three properties as follows.
Reflexivity x² = x² and hence x ~ x
Reflexivity if x² = y² then y² = x², and hence y ~ x whenever x ~ y
Transitivity Suppose x ~ y and y ~ z. This gives x² = y² and y² = z², and it follows that x² = z² and x ~ z as required.

4. What do we mean when we say that \sim is an equivalence relation?

SOLUTION: A relation is an equivalence if it is transitive, symmetric, and reflexive.

5. Describe the equivalence classes of \sim .

SOLUTION: The equivalence class [y] of y contains the elements solving $x^2 = y^2$, which is $\pm y$ (assuming real (not complex) numbers). Each equivalence class contains the two elements $\pm y$ for some y, except for one class which only contains a single element, 0.

Exercise 0.1 Calculate the following

- 1. $\binom{7}{3}$
- 2. $\binom{9}{4}$

 $\begin{array}{l} 3. \quad \binom{14}{4} \\ 4. \quad \binom{14}{10}. \\ 5. \quad \binom{620}{1} \\ 6. \quad \binom{620}{619} \\ 7. \quad \binom{620}{618} \end{array}$

Exercise 0.2 Give two proofs that

$$\binom{n}{k} = \binom{n}{n-k}$$

Exercise 0.3 (Freely from Stein et al 1.1 Exercise 9) Using the formula for $\binom{n}{2}$, it is easy to see that

$$n\binom{n-1}{2} = \binom{n}{2}(n-2)$$

Find an intuitive and conceptual argument that this equation holds, using the fact that $\binom{n}{2}$ represents the number of two-element subsets.

Hint! You may think in terms officers and committees in a club, as in Exercise ?? Question 3.

Exercise 0.4 (Stein et al 1.3 Exercise 8) Consider a Cartesian coordinate system with integer coordinates. How many different paths exist from the origin (0,0) to the point (m,n) where each path is built from m horizontal and n vertical line segments, each of length 1?

Exercise 0.5 (Stein et al 1.3 Exercise 18) Apply calculus and the binomial theorem to $(1 + x)^n$ to show that

$$\binom{n}{1} + 2\binom{n}{2} + 3\binom{n}{3} + \ldots = n2^{n-1}$$