Revision Exercises Week 4 Public Key Cryptography

Hans Georg Schaathun

12th November 2015

1 Equations

Problem 1.1 How many solutions $x \in \mathbb{Z}_{12}$ exist for each of the following congruences:

$$4 \cdot x \equiv 1 \pmod{12},\tag{1}$$

- $4 \cdot x \equiv 2 \pmod{12},\tag{2}$
- $4 \cdot x \equiv 4 \pmod{12}.\tag{3}$

Give reasons for your answers, either by listing the complete set of solutions, or otherwise.

SOLUTION: The first equation has no solution. This is seen because a solution would be an inverse of 4 modulo 12, but 4 and 12 have a common factor 2 (or 4) so 4 has no inverse.

The second equation also has no solution. We try^{*a*} different possible values of x, see table below, and find that the LHS cycles through the values 0, 4, and 8 modulo 12. We can never get 2.

x	0	1	2	3	4	5	6	
LHS	0	4	8	12	16	20	24	
LHS mod 12	0	4	8	0	4	8	0	

The third has four solutions where $0 \le x < 12$. This can also be seen in the table above. The left hand side cycles through three different values, every third value is 4, solving the equation. When x runs from 0 to 12, we get four solutions.

^aIt is possible to make more abstract arguments. It is however, a general fact about rings that the product ax will cycle repeatedly through a subset of the ring as x varies. Tabulating will

2 Highest common factor

Exercise 2.1 Find

- 1. hcf(18, 12)
- 2. hcf(19, 8)

SOLUTION:

- 1. hcf(18, 12) = 6
- 2. hcf(19, 8) = 1

Exercise 2.2 Prove that Euclid's Division Theorem is also valid for negative numbers m.

Hint. Note that if m < 0, then -m > 0 and the restricted version can be applied to m' = -m to get numbers q' and r' to solve m' = nq' + r'. Note that q may be negative, while r cannot, so q = -q' and r = -r' is not quite the sol. Can you add/subtract a little bit to these numbers to get $0 \le r < n$ and satisfy Euclid's theorem?

Exercise 2.3 Using Euclid's Algorithm, find

- 1. hcf(121, 77)
- 2. hcf(963, 312)

SOLUTION:

- 1. hcf(121, 77) = 11
- 2. hcf(963, 312) = 3

Exercise 2.4 Prove that Euclid's Division Theorem is also valid for negative numbers m.

Hint. Note that if m < 0, then -m > 0 and the restricted version can be applied to m' = -m to get numbers q' and r' to solve m' = nq' + r'. Note that q may be negative, while r cannot, so q = -q' and r = -r' is not quite the solution. Can you add/subtract a little bit to these numbers to get $0 \le r < n$ and satisfy Euclid's theorem?

3 Multiplicative inverses

Exercise 3.1 Find the multiplicative inverses of

- 1. 7 mod 26.
- 2. 28 mod 81.
- 3. 52 mod 121.

SOLUTION:

- 1. 7 mod 26 = 15.
- 2. 28 mod 81 = 55.
- 3. 52 mod 121 = 7.

Exercise 3.2 Prove that if d = hcf(a, n), then it is possible to find $x, y \in \mathbb{Z}$ so that

 $d = a \cdot x + n \cdot y.$

Exercise 3.3 Consider the affine cipher

$$e_{k_1,k_2}(x) = k_1 \cdot x + k_2 \mod n.$$

The decryption function can be written on the same form

$$d_{k'_1,k'_2}(y) = k'_1 \cdot y + k'_2 \mod n,$$

for suitable choices of (k'_1, k'_2) . Find the decryption key (k'_1, k'_2) for each of the following encryption keys:

- 1. $(8,3) \mod 26$.
- 2. $(7, 17) \mod 256$.

Problem 3.1 Solve the following equation

$$3 \cdot x \equiv 1 \pmod{8},$$

where $0 \le x < 8$.

SOLUTION: It can be seen that $3^{-1} \mod 8 = 3^a$. Multiplying the equation by 3 we get

 $x \equiv 3 \cdot 1 = 3 \pmod{8}.$

We conclude that x = 3.

^aUse the Extended Euclidean Algorithm if you do not see the inverse instantly

Problem 3.2 Consider n = 59 and a = 6.

- 1. Show how you use Euclid's algorithm to find hcf(6, 59).
- 2. Use the Extended Euclidean Algorithm to find the multiplicative inverses of $6 \pmod{59}$.

SOLUTION: We tabulate the values for q and r according to Euclid's division theorem. Subsequently, we fill in the values for x and y according to the Extended Euclidean Algorithm, as follows:

a	n	q	r	x	y
6	59	0	6	$1 - (-1) \cdot 9 = 10$	-1
59	6	9	5	$0 - 1 \cdot 1 = -1$	1
6	5	1	1	1	0

We see that hcf(6, 59) = 1 and $6^{-1} \mod 59 = 10$.

4 Some more simple exercises

Exercise 4.1 Write down all the powers of 5 in \mathbb{Z}_7 . What do you observe?

Exercise 4.2 Write down the product $3 \cdot x$ for every $x \in \mathbb{Z}_8$. What do you observe?

Exercise 4.3 Consider the following elements x in their respective rings. Find x^{-1} for each value of x.

1. $x = 7 \in \mathbb{Z}_{29}$

Exercise 4.4 Consider the following elements x in their respective rings. Find -x for each value of x.

1. $x = 7 \in \mathbb{Z}_{29}$