Exercise Set Part 5 Public Key Cryptography

Hans Georg Schaathun

12th November 2015

Exercise 0.1 Calculate

1. $6^3 \mod 11$

Solution:

ations.

1. $6^3 \mod 11 = 7$

Problem 0.1 Show how to calculate the following powers: $5^{17} \mod 9$ How many multiplications do you need?

SOLUTION: We can use the square-and-multiply algorithm. $5^{17} \mod 9 = (((5^2)^2)^2)^2 \cdot 5 \mod 9.$ (1) Thus we can calculate $5^2 \mod 9 = 25 \mod 9 = 7,$ (2) $(5^2)^2 \mod 9 = 7^2 \mod 9 = 4,$ (3) $((5^2)^2)^2 \mod 9 = 4^2 \mod 9 = 7,$ (4) $(((5^2)^2)^2)^2 \mod 9 = 7^2 \mod 9 = 4,$ (5) and finally $5^{17} \mod 9 = 4 \cdot 5 \mod 9 = 2.$ We needed four squarings and one extra multiplication, for a total of five multiplic-

Problem 0.2 What does the encryption function for RSA look like?

SOLUTION: The RSA encryption function is

$$e_{e,n}(x) = x^e \mod n$$

where n = pq is a product of two large primes p, q and e is invertible modulo (p-1)(q-1).

Problem 0.3 Show how to calculate the following powers: $5^{17} \mod 9$ How many multiplications do you need?

SOLUTION: We can use the square-and-multiply algorithm.

$$5^{17} \mod 9 = (((5^2)^2)^2)^2 \cdot 5 \mod 9.$$
 (6)

Thus we can calculate

$$5^2 \mod 9 = 25 \mod 9 = 7,$$
 (7)

$$(5^2)^2 \mod 9 = 7^2 \mod 9 = 4,$$
 (8)

$$((5^2)^2)^2 \mod 9 = 4^2 \mod 9 = 7,$$
 (9)

$$(((5^2)^2)^2)^2 \mod 9 = 7^2 \mod 9 = 4,$$
 (10)

and finally

$$5^{17} \mod 9 = 4 \cdot 5 \mod 9 = 2.$$

We needed four squarings and one extra multiplication, for a total of five multiplications.