Solutions Week 6 Logic

Hans Georg Schaathun

12th November 2015

This document includes all the exercises from the main programme, some of them with solutions. It is available both as a PDF document and as a web site.

The main programme can also be found either as a PDF document and as a web site.

Note that the web versions use MathML and may require Firefox to display correctly.

1 Session 1

1.1 Propositional Logic

Related reading: Stein et al. p. 147-154 or Rosen p. 4-6 and 23-24

Exercise 1.1 Consider \mathbb{Z}_2 (the integers modulo 2). Fill in the addition and multiplication tables below:

•	0	1	+	0	1
0			0		
1			1		

Compare these two tables to the truth tables for logic operators $(\lor, \land, \oplus, \neg)$ in the video above. What is the relationship between the set $\{F, T\}$ of truth values and \mathbb{Z}_2 ? Can any of the logic operators be mapped to addition or multiplication?

Exercise 1.2 Let F and T stand for predicates (constants) that are always false or always true respectively. Simplify the following:

1. $s \lor s =$	5. $T \lor s =$
2. $s \land s =$	6. $F \lor s =$
3. $s \lor (\neg s) =$	7. $T \wedge s =$
4. $s \wedge (\neg s) =$	8. $F \wedge s =$

	1. $s \lor s = s$	1. $T \lor s = T$
Solution:	2. $s \wedge s = s$	2. $F \lor s = s$
	3. $s \lor (\neg s) = T$	3. $T \wedge s = s$
	4. $s \wedge (\neg s) = F$	4. $F \wedge s = F$

Exercise 1.3 There are two distributive laws. One was proved above. The other is this:

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Prove that this law is also true, using truth tables.

1.2 Implication and equivalence

Related reading: Stein *et al.* p. 155-159 or Rosen p. 6+ and 9+

Exercise 1.4 Show that the expression $s \Rightarrow t$ is equivalent to $(\neg s) \lor (s \land t)$.

Definition 1 (Equivalence) Given two predicates s and t. The notation

 $s \Leftrightarrow t$

means the same as

 $(s \Leftarrow t) \land (s \Rightarrow t),$

and we say that s is equivalent to t.

Exercise 1.5 Fill in the truth table for $s \Leftrightarrow t$:

s	t	$s \Leftrightarrow t$
T	T	
T	F	
F	T	
F	F	

Exercise 1.6 Give examples in plain English or Scandinavian where

- 1. «if» appears to mean «if and only if» (or where you think it would for many people).
- 2. where *«if»* would not mean *«if and only if»*.

SOLUTION: For instance:

- 1. If the sun is shining, then I go swimming.
- 2. If you fail mathematics, then you will not get your degree.

1.3 Direct Proof

Related reading: Stein et al. p. 179-180 or Rosen p. 63-64

Exercise 1.7 Rewrite the following argument in symbolic form, and decide whether or not it is a valid argument.

- 1. If it is Wednesday, then we have fish for dinner.
- 2. It is Wednesday.
- 3. We have fish for dinner.

Exercise 1.8 Rewrite the following argument in symbolic form, and decide whether or not it is a valid argument.

- 1. If it is Wednesday, then we have fish for dinner.
- 2. We have fish for dinner.
- 3. It is Wednesday.

Exercise 1.9 Rewrite the following argument in symbolic form, and decide whether or not it is a valid argument.

- 1. If you fail mathematics, then you will not get your engineering degree.
- 2. You do not get your engineering degree.
- 3. Therefore you did not fail the mathematics module.

Exercise 1.10 Rewrite the following argument in symbolic form, and decide whether or not it is a valid argument.

- 1. If you fail mathematics, then you will not get your engineering degree.
- 2. You fail mathematics
- 3. Therefore you do not get your engineering degree.

2 More examples

3 Session 2

3.1 Quantifiers

Related reading: Stein et al. p. 163-172 or Rosen p. 34-41

Exercise 3.1 Consider the predicate

$$P(x) := |x| \le 1$$

For what values of x is P(x) true ...

- 1. if the universe of x is the integers (i.e. $x \in \mathbb{Z}$)?
- 2. if the universe of x is the set of real numbers (i.e. $x \in \mathbb{R}$)?

SOLUTION:

- 1. It is true for $x \in \{-1, 0, +1\}$ (discrete set).
- 2. It is true for $x \in [-1, +1]$ (closed interval).

Exercise 3.2 (Video «The existential quantifier») An equation can be thought of as a predicate. Consider the equation $x^2 + 1 = 0$.

Express the claim that the equation has a real solution (a solution $x \in \mathbb{R}$) in symbolic form.

Solution:

$\exists x \in \mathbb{R}, x^2 + 1 = 0$

Exercise 3.3 A natural number p is prime if it has no positive integer factor other than one and itself. Find two ways to write this criterion in symbolic form. You need to introduce a variable x to denote potential factors of p, and use either the existential or universal quantifier on x for two different ways.

Each answer could begin with the words $\ll p \in \mathbb{N}$ is a prime number if and only if ...».

SOLUTION:

1. p is prime number if

$$\forall x \in \{2, 3, \dots, p-1\}, x \mid p$$

2. p is prime number if

 $\neg \exists x \in \{2, 3, \dots, p-1\}, x \mid p.$

Exercise 3.4 Which of the following statements are true and which are false?

- 1. $\forall z \in \mathbb{N}, \ z^2 + 5z + 10 \ge 16$ 2. $\exists z \in \mathbb{N}, \ z^2 < 1$
- 3. $\exists z \in \mathbb{Z}, z^2 < 1$

The following definitions are used

 $\mathbb{Z} = \{\dots, -1, 0, +1, \dots\} \quad the \ integers \tag{1}$

- $\mathbb{N} = \{1, 2, 3, \ldots\} \quad the \ natural \ numbers \tag{2}$
- \mathbb{R} is the set of real numbers (3)
- \mathbb{C} is the set of complex numbers (4)

Exercise 3.5 What is the difference between the two following statements?

$$\forall x \in \mathcal{X}, q(x), \tag{5}$$

$$x \in \mathcal{X} \Longrightarrow q(x) \tag{6}$$

Discuss. Is there a difference at all?

4 Last lectures

Related reading: Stein et al. p. 179–181 or Rosen p. 63–64, 71–72, and $85\pm$

5 Compulsory Assignment (Tuesday 22 September 2015)

Exercise 5.1 Prove DeMorgan's law which states that

$$\neg(s \wedge t) = \neg s \vee \neg t$$

You can use the same technique as in the previous example.

Exercise 5.2 Give truth tables for the following:

1. $(s \lor t) \land (\neg s \lor t) \land (s \lor \neg t)$

Exercise 5.3 Consider the following statement:

Alice and Bob are not both ill.

- 1. Define predicate symbols and rewrite the statement in symbolic form.
- 2. Use deMorgan's law to rephrase the statement.
- 3. Rephrase the statement in English (or Norwegian), using the word 'well' rather than 'ill' without changing the meaning..

Exercise 5.4 Rewrite the following argument in symbolic form, and decide whether or not it is a valid argument.

- 1. An equilateral triangle (defined as one with three edges of equal length), has three equal angles.
- 2. Triangle T has three angles of 60° each.
- 3. Therefore T is equilateral.

Exercise 5.5 Rewrite the following argument in symbolic form, and decide whether or not it is a valid argument.

- 1. A triangle is equilateral (defined as above) if and only if it has three equal angles.
- 2. Triangle T has three angles of 60° each.
- 3. Therefore T is equilateral.

Exercise 5.6 Is the following a valid argument?

- The whale is a fish.
- All fish can swim.
- Therefore the whale can swim.

Exercise 5.7 Is the following a valid argument?

- The whale is not a fish.
- All fish can swim.
- Therefore the whale cannot swim.

Exercise 5.8 Which of the following statements are true and which are false?

- 1. $\forall z \in \mathbb{Z}, z^2 \ge z$
- 2. $\forall z \in \mathbb{R}, \ z^2 \ge z$

3. $\exists z \in \mathbb{R}, \ z^2 = -1$ 4. $\exists z \in \mathbb{C}, \ z^2 = -1$