
Exercises Week 8

Introduction to Algorithms

Hans Georg Schaathun

12th November 2015

Period 7�13 October 2015

Reading Stein et al cover this material in Chapter 4.

Programme This document details the programme for the week, including exercises and
pointers to other material. It is available in two versions:

1. as a PDF document.

2. as a web site. This depends on MathML and may require �refox/iceweasel to
display correctly.

The web version includes inline video. The pdf version shows a still image from
the video, providing a hyperlink directly to the video on the web site.

1 Wednesday 7 October 2015

1

http://www.hg.schaathun.net/DisMath/week08.pdf
http://www.hg.schaathun.net/DisMath/week08.xml

Theory

What is an algorithm?
Algorithms and recursion

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 3/Session 2/Video 1
Recorded: October 2, 2015

Prof Hans Georg Schaathun What is an algorithm? Session 3/2 (1) 1 / 8

OGG MP4 Slides

A well-designed algorithm needs the following properties:

1. Input must be well-de�ned

2. Output must be well-de�ned

3. De�niteness i.e. the steps must be precisely de�ned.

4. Correctness i.e. the algorithm must produce the cor-
rect (intended) output

5. Finiteness the result should be reached within a �nite
number of steps

6. E�ectiveness i.e. it must be possible to perform each
step exactly and in a �nite amount of time.

7. Generality i.e. the procedure must be applicable to
any problem of the desired form (not just particular
input values).

Related reading: Rosen p. 193�196

Exercise 1.1 (Rosen p. 204, ex. 2) Recall the characteristics Input, Output, De�n-

iteness, Correctness, Finiteness, E�ectiveness, and Generality, as de�ned in the video,

or in Rosen's book p. 195.

Consider the following algorithms, and determine for each one, which characteristics they

posess and which they lack.

a)
1 procedure doub l e (n : p o s i t i v e integer)

2 while n > 0
3 n := 2n

b)

1 procedure d i v i d e (n : p o s i t i v e integer)

2 while n > 0
3 m := 1/n
4 n := n− 1

c)

1 procedure sum(n : p o s i t i v e integer)

2 sum := 0

3 while i < 10
4 sum := sum + i

d)
1 procedure choose (a, b : p o s i t i v e integer)

2 x := e i t h e r a or b

2

http://www.hg.schaathun.net/DisMath/video2015/Week08/video3-2-1.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week08/video3-2-1.mp4
http://www.hg.schaathun.net/DisMath/Week08/video3-2-1.pdf

1. procedure euclid(a, b)

2. r := a mod b

3. a := b

4. b := r

5. If r = 0, then return a

6. else Goto Line 2

Table 1: Euclid's Algorithm

Exercise 1.2 Review Euclid's (Table 1) algorithm and determine if it possesses each of

the algorithmic properties above. Give reasons for your answers.

Theory

Subroutines and recursion
Algorithms and recursion

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 3/Session 2/Video 2
Recorded: October 2, 2015

Prof Hans Georg Schaathun Subroutines and recursion Session 3/2 (1) 1 / 7

OGG MP4 Slides

The key to problem solving is to split the problem into small
pieces (subproblems) which are easier to solve.

We design algorithms to solve problems, and we design sub-
routines to solve subproblems.

Recursion is a very speci�c application of subroutines, where
an algorithm uses itself as a subroutine. This is a critical
concept in computer science.

Theory

OGG

MP4

Slides

The Tower of Hanoi is a classic puzzle, with a simple
recursive algorithmic solution. You can try it out
yourself in an interactive, online game at http://

haubergs.com/hanoi.

Related reading: Stein p. 213+ or Rosen p. 264+

Exercise 1.3 How many steps are required to move a Tower of Hanoi of ...

1. 1 disk?

2. 2 disks?

3. 3 disks?

4. 5 disks?

5. n disks? (this is di�cult; we return to it later)

3

http://www.hg.schaathun.net/DisMath/video2015/Week08/video3-2-2.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week08/video3-2-2.mp4
http://www.hg.schaathun.net/DisMath/Week08/video3-2-2.pdf
http://www.hg.schaathun.net/DisMath/video2015/Week08/Hanoi.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week08/Hanoi.mp4
http://www.hg.schaathun.net/DisMath/Week08/Hanoi.pdf
http://haubergs.com/hanoi
http://haubergs.com/hanoi

Theory

Recursion Formalised
Algorithms and recursion

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 3/Session 2/Video 4
Recorded: October 2, 2015

Prof Hans Georg Schaathun Recursion Formalised Session 3/2 (4) 1 / 6

OGG

MP4

Slides

Having seen an example, we shall formalise the
concept of recursion.

Related reading: Rosen p. 353�356

Exercise Example

Divising an algorithm
Exercise example

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 3/Session 2/Video 5
Recorded: October 2, 2015

Prof Hans Georg Schaathun Divising an algorithm Session 3/2 (5) 1 / 6

OGG

MP4

Slides

Problem 1.1 Devise an algorithm which takes a

sorted array as input, and outputs an array of all

repeated elements in the input.

Exercise 1.4 (Rosen p. 204, ex. 3) Devise a recursive algorithm which �nds the sum

of all the integers in a list.

Exercise 1.5 Devise an algorithm which �nds the common elements in two sorted ar-

rays. The output should be an array.

Theory

Slides

1 procedure s e l e c t i o n s o r t (Array A of l ength n)
2 for i := 1 to n−1
3 for j := i+1 to n
4 i f A[i] > A[j]
5 swap A[i] with A[j]

Related reading: Rosen p. 200

Exercise 1.6 Consider the list [6, 2, 5, 4, 7, 1].

1. Demonstrate how you sort the numbers step by step using selection sort.

2. Discuss: Is the algorithm recursive as you perform it?

Theory

Slides

1 procedure i n s e r t i o n s o r t (Array A1, A2, . . . , An)
2 for i := 2 to n
3 j := i
4 while (j ≥ 2) and (Aj < Aj−1)
5 swap Aj and Aj−1
6 j := j−1

4

http://www.hg.schaathun.net/DisMath/video2015/Week08/video3-2-4.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week08/video3-2-4.mp4
http://www.hg.schaathun.net/DisMath/Week08/video3-2-4.pdf
http://www.hg.schaathun.net/DisMath/video2015/Week08/video3-2-5.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week08/video3-2-5.mp4
http://www.hg.schaathun.net/DisMath/Week08/video3-2-5.pdf
http://www.hg.schaathun.net/DisMath/Video/selectionsort.mp4
http://www.hg.schaathun.net/DisMath/Session2-5/selectionsort.pdf
http://www.hg.schaathun.net/DisMath/Video/insertionsort.mp4
http://www.hg.schaathun.net/DisMath/Session2-5/insertionsort.pdf

Exercise 1.7 (This exercise is similar to Exercise 1.6.) Consider the list [6, 2, 5, 4, 7, 1].

1. Demonstrate how you sort the numbers step by step using insertion sort.

2. Discuss: Is the algorithm recursive as you perform it?

2 Thursday 8 October 2015

2.1 More recursion

5

Exercise Example

Recursion Formalised
Algorithms and recursion

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 3/Session 2/Video 4
Recorded: October 2, 2015

Prof Hans Georg Schaathun Recursion Formalised Session 3/2 (4) 1 / 6

OGG MP4 Slides

Exercise 2.1 Rewrite the insertion sort algorithm in recurs-

ive form. (See the previous section for the iterative version.)

We observe that during the iteration i = 2 only Ai is moved
(and only to the left). Hence elements to the left must already
be sorted, and elements to the right are irrelevant. This is
the core idea of a recursive approach.

We can break the algorithm into two steps. First we use
n−1 iterations to sort n−1 elements. Then the nth iteration
inserts the nth element into the subarray of n − 1 elements,
maintaining sort order. This is the basis for the following
recursive algorithm.

1. procedure InsertionSort(A1, A2, . . . , An)

2. if n = 0, then return []

3. else

4. InsertionSort(A1, A2, . . . , An−1)

5. insert(An into A1, A2, . . . , An−1)

The insert algorithm is also de�ned recursively, as follows.

1. procedure insert(e into A1, A2, . . . , An)

2. if n = 0, then

3. A1 = e

4. else if e > An, then

5. An+1 = e

6. else

7. An+1 = An

8. insert(e into A1, A2, . . . , An−1)

Related reading: Rosen p. 358-359

Problem 2.1 Consider the selection sort algorithm as described in the videos:

1. For i = 1, 2, . . . , n− 1,

2. for j = j + 1, j + 2, . . . , n,

6

http://www.hg.schaathun.net/DisMath/video2015/Week08/video3-3-4.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week08/video3-3-4.mp4
http://www.hg.schaathun.net/DisMath/Week08/video3-3-4.pdf

3. if Ai > Aj, then swap Ai with Aj

Rewrite the selection sort algorithm in recursive form.

Hint: Consider the array at the start of iteration i In the outer loop. Can you identify a

subarray which has to be sorted?

2.2 Recurrences

Theory

Recurrence Equations
Counting Operations in Recursive Algorithms

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 3/Session 5/Video 1
Recorded: October 2, 2015

Prof Hans Georg Schaathun Recurrence Equations Session 3/5 (1) 1 / 5

OGG

MP4

Slides

Problem 2.2 How many moves (MoveDisc calls)

are need to move an n-disk Tower of Hanoi?

Related reading: Stein et al. p. 213-214 or Rosen
p. 157+

1. procedure HanoiMove(n) from s to t using a

2. if n = 1, then MoveDisc from s to t

3. else

4. HanoiMove(n− 1) from s to a using t

5. MoveDisc from s to t

6. HanoiMove(n− 1) from a to t using s

Exercise 2.2 Give recurrence equations to give the number of comparisons required to

sort an n-element array using insertion sort.

Theory

Tabulating Recurrences
Towards Understanding Recurrence

Prof Hans Georg Schaathun

Høgskolen i Ålesund

October 2, 2015

Prof Hans Georg Schaathun Tabulating Recurrences October 2, 2015 1 / 4

OGG

MP4

Slides

A good start to understand a recurrence is to calcu-
late a few values by hand and put them in a table.

Related reading: Stein et al. p. 213-214 or Rosen
p. 157+

Exercise 2.3 Tabulate the following recurrence for n = 0, . . . , 7:

T (n) = 0.5T (n− 1) + 2, (1)

T (0) = 0 (2)

Can you spot a pattern? Try to guess a closed form expression.

7

http://www.hg.schaathun.net/DisMath/video2015/Week08/recurrence01.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week08/recurrence01.mp4
http://www.hg.schaathun.net/DisMath/Week08/recurrence01.pdf
http://www.hg.schaathun.net/DisMath/video2015/Week08/tabular.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week08/tabular.mp4
http://www.hg.schaathun.net/DisMath/Week08/tabular.pdf

1. Algorithm SquareNmultiply(x, e, n)

2. if e = 1, return x

3. y := SquareNmultiply(x, be/2c , n)
4. y′ := y2 mod n

5. if e mod 2 = 1,

6. y′′ := y′ · x mod n

7. else

8. y′′ := y′

9. return y′′

Table 2: Square-and-Multiply algorithm.

2.3 Split and Conquer

Exercise 2.4 How many multiplications are needed to calculate ax mod n in the worst

case, using square-and-multiply? Give a recurrence equation in terms of x.

Theory

Slides

Merge sort sorts recursively, by splitting the array in two halves,
sorting each half separately, and then merging the two halves
together while preserving the sort order.

1. if n == 1, return A

2. B = MergeSortA1,2,...,bn/2c

3. C = MergeSortAbn/2c+1,bn/2c+2,...,n

4. return Merge B,C

Related reading: Stein et al. p. 230 or Rosen p. 359�364

Exercise 2.5 Give recurrence equations to give the number of comparisons required to

sort an n-element array using merge sort.

Exercise 2.6 Consider a sorted array A as input. Devise an algorithm which �nds a

given element k in A.

1. Give an iterative formulation of your algorithm,

2. Give a recursive formulation of your algorithm,

8

http://www.hg.schaathun.net/DisMath/Video/mergesort.mp4
http://www.hg.schaathun.net/DisMath/Session2-5/mergesort.pdf

3. How many comparisons does your algorithm require to �nd k? Would it be possible

to make it faster?

3 Compulsory Exercises (Tuesday 13 October 2015)

Exercise 3.1 Consider the square-and-multiply algorithm as given in Table 2. What can

you say about this algorithm with respect to Input, Output, De�niteness, Correctness,

Finiteness, E�ectiveness, and Generality.

Exercise 3.2 Consider the square-and-multiply algorithm which calculates xa mod n.
Write pseudo code for an iterative version of this algorithm.

Exercise 3.3 Consider the following linear search algorithm:

1. procedure �nd(k,A1, A2, . . . , An)

2. for i := 1, 2, . . . , n

3. if k = Ai, return i

It �nds the index of an element k in an array A1, A2, . . . , An. Rewrite the algorithm

using recursion instead of a loop.

Exercise 3.4 Give pseudo-code for a recursive version of Euclid's algorithm, and verify

that the properties Input, Output, De�niteness, Correctness, Finiteness, E�ectiveness,

and Generality.

Exercise 3.5 How many comparisons are needed, in the worst case, to sort an array

using

1. ... insertion sort.

2. ... selection sort.

3. ... merge sort.

Compare the three. Is any one faster than the others?

Exercise 3.6 Tabulate the following recurrence for n = 0, . . . , 7:

T (n) = 2T (n− 1) + 1, (3)

T (0) = 0 (4)

Can you spot a pattern? Try to guess a closed form expression.

9

	Wednesday 7 October 2015
	Thursday 8 October 2015
	More recursion
	Recurrences
	Split and Conquer

	Compulsory Exercises (Tuesday 13 October 2015)

