
Exercises Week 9

Mathematical Induction

Hans Georg Schaathun

12th November 2015

Period 14�20 October 2015

Reading Stein et al cover this material in Chapter 4.

Programme This document details the programme for the week, including exercises and
pointers to other material. It is available in two versions:

1. as a PDF document.

2. as a web site. This depends on MathML and may require �refox/iceweasel to
display correctly.

The web version includes inline video. The pdf version shows a still image from
the video, providing a hyperlink directly to the video on the web site.

1 Mathematical Induction (Wednesday 14 October 2015)

Theory

The smallest
Mathematical induction

Prof Hans Georg Schaathun

Høgskolen i Ålesund

October 9, 2015

Prof Hans Georg Schaathun The smallest October 9, 2015 1 / 7

OGG

MP4

Slides

The natural numbers have a peculiar property. Any
set of natural numbers, whether �nite or in�nite, has
one element which is smaller than any of the others.

Related reading: Stein et al. p. 191-195 or Rosen
p. 307+

Theory

Mathematical Induction Formalised
Formalism

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Induction 2
Recorded: October 9, 2015

Prof Hans Georg Schaathun Mathematical Induction Formalised Induction 2 1 / 4

OGG

MP4

Slides

The fact that any set of natural numbers has a smal-
lest element makes it possible to use mathematical

induction to prove predicates p(x) for all x ∈ N.

Related reading: Stein et al. p. 195-198 or Rosen
p. 307+

1

http://www.hg.schaathun.net/DisMath/week09.pdf
http://www.hg.schaathun.net/DisMath/week09.xml
http://www.hg.schaathun.net/DisMath/video2015/Week09/smallest.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week09/smallest.mp4
http://www.hg.schaathun.net/DisMath/Week09/smallest.pdf
http://www.hg.schaathun.net/DisMath/video2015/Week09/induction02.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week09/induction02.mp4
http://www.hg.schaathun.net/DisMath/Week09/induction02.pdf

Theory

Proving Recurrence Solutions
Mathematical Induction

Prof Hans Georg Schaathun

Høgskolen i Ålesund

October 9, 2015

Prof Hans Georg Schaathun Proving Recurrence Solutions October 9, 2015 1 / 5

OGG MP4 Slides

Problem 1.1 Use mathematical induction to prove that the

following recurrence:

T (n) =

{
1, when n = 1,

2T (n− 1) + 1, otherwise,

is equivalent to T (n) = 2n − 1.

Related reading: Stein et al. p. 191-195 or Rosen p. 307+

Exercise 1.1 Consider the following recurrence.

T (n) = 0.5T (n− 1) + 2, (1)

T (0) = 0 (2)

Prove that T (n) = 4− 22−n

Exercise 1.2 Describe the main steps of a proof by induction.

Exercise 1.3 Consider a ladder. If you stand on the ground, it is possible to step onto

the �rst rung. If you stand at the nth rung, it is possible to climb onto the (n+1)st rung.

Prove that you can climb to the top of the ladder, starting on the ground, using a proof

by contradiction.

2

http://www.hg.schaathun.net/DisMath/video2015/Week09/recurrenceinduction.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week09/recurrenceinduction.mp4
http://www.hg.schaathun.net/DisMath/Week09/recurrenceinduction.pdf

Exercise Example

Correctness of Algorithms
Mathematical induction

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Induction 3
Recorded: October 9, 2015

Prof Hans Georg Schaathun Correctness of Algorithms Induction 3 1 / 8

OGG MP4 Slides

Problem 1.2 Prove that the output array of insertion sort

is sorted in increasing order.

1 procedure i n s e r t i o n s o r t (Array A1, A2, . . . , An)
2 for i := 2 to n
3 j := i
4 while (j ≥ 2) and (Aj < Aj−1)
5 swap Aj and Aj−1
6 j := j−1

Solution: To conduct a proof by induction, we need some
predicate describing partial success of the algorith, Loop in-
dices provide a reasonable link. We observe that during the
iteration i = 2 only Ai is moved (and only to the left). Hence
elements to the left must already be sorted, and elements to
the right are irrelevant. Thus we can propose the following
invariant P (i):

P (n) := the subarray A1, A2, . . . , An is sorted at the start of iteration n+ 1

If P (n) is true, the entire array is sorted after the last iteration, and the algorithm
is correct. Therefore we prove P (n) by induction.

Firstly, we note that for i = 2, there is a single element to the left, which makes a
trivially sorted subarray. Hence P (1) is true.

To prove P (n)⇒ P (n+1), i.e. that the subarray remains sorted after the iteration,
we need to consider the old subarray A1, . . . , An, and the new one, A′1, . . . , A

′
n+1. It

is su�cient to prove that A′j−1 ≤ A′j for any j.

Considering an arbitrary j, there are three possibilities:

1. A′j−1 and A′j correspond to adjacent elements in the original array. Then
A′j−1 ≤ A′j as required, because the original array was sorted.

2. A′j = An+1 is the new element. In this case A′j ≥ A′j−1, lest the while-condition
be true, and the two elements swapped.

3. A′j−1 = An+1 is the new element. In this case A′j < A′j−1, since the two
elements have been swapped by the while loop.

In all three cases, the sort order is satis�ed, and we conclude that the loop maintains
sort order. InsertionSort is correct by mathematical induction.

3

http://www.hg.schaathun.net/DisMath/video2015/Week09/induction03.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week09/induction03.mp4
http://www.hg.schaathun.net/DisMath/Week09/induction03.pdf

Exercise Example

Proving Insertion sort again
Mathematical induction

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Induction 4
Recorded: October 9, 2015

Prof Hans Georg Schaathun Proving Insertion sort again Induction 4 1 / 8

OGG MP4 Slides

Problem 1.3 Prove that the output array of insertion sort is

sorted in increasing order. Base your proof on the recursive

version below.

Related reading: Stein et al. p. 203-206 or Rosen p. 357-
358

Solution: We base the proof on the recursive formulation of
the algorithm.

To conduct a proof by induction, we need some predicate de-
scribing partial success of the algorith, The a variable should
be in the set of natural numbers. In the case of recursion, we
can typically link the predicate to the size of the input, as follows:

P (n) := Insertion sort can correctly sort n numbers

If we can prove P (n) for all n, then the algorithm is correct for any (valid) input.

We note that for n = 0 we have an empty array, which is trivially sorted. Hence
P (0) is trivially true. It remains to prove that P (n− 1)⇒ P (n).

In the recursive case, the algorithm performs two operations. First, an InsertionSort
on n − 1 elements, which is correct by the inductive hypothesis P (n − 1); and
secondly an insert into a sorted array of n − 1 elements. If we can prove that the
insert algorithm is correct, then correctness of InsertionSort will follow.

The proof of the insert algorithm is simular

Q(n) := The insert algorithm correctly inserts an element into an array of n numbers

Again, we note that Q(0) is true, because n = 0 gives a singleton array which is
trivially sorted. To prove Q(n − 1) ⇒ Q(n), we note that there are two cases. If e
is larger than An, it is larger than every element in A because it is sorted. Thus e is
correctly inserted as a last element. If e is not larger than An, An has to be the last
element, at position n+1, and e is inserted into the subarray of n− 1 elements. By
the inductive hypothesis, P (n− 1), e is correctly inserted, and P (n) follows for any
non-negative n by mathematical induction.

Since insert is correct, InsertionSort is correct, as argued above.

Exercise 1.4 Prove that the Tower of Hanoi algorithm is correct.

Exercise 1.5 Prove that the Square-and-Multiply algorithm is correct as given in Table 1.

1. Identify a base case, and argue that the algorithm returns the correct answer in the

4

http://www.hg.schaathun.net/DisMath/video2015/Week09/induction04.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week09/induction04.mp4
http://www.hg.schaathun.net/DisMath/Week09/induction04.pdf

1. Algorithm SquareNmultiply(x, e, n)

2. if e = 1, return x

3. y := SquareNmultiply(x, be/2c , n)
4. y′ := y2 mod n

5. if e mod 2 = 1,

6. y′′ := y′ · x mod n

7. else

8. y′′ := y′

9. return y′′

Table 1: Square-and-Multiply algorithm.

base case.

2. Consider Line 3 Write y as an expression in terms of x.

3. Consider Lines 4�9. Write y′′ as a mathematical expression in terms of y.

4. Using the answers from the two previous questions, write y′′ as an expression in

terms of x.

5. Argue that y′′ as given in your previous answer is equal to xe mod n. Which

arithmetic rules are you using?

6. Use your previous answers to argue that the inductive case is correct.

7. Give the structure of an inductive proof and �nalise the argument that the algorithm

in the table be correct.

2 Thursday

Theory

Iterating a recurrences
Recurrence

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 3/Session 5/Video 3
Recorded: October 9, 2015

Prof Hans Georg Schaathun Iterating a recurrences Session 3/5 (3) 1 / 5

OGG

MP4

Slides

One way to solve a recurrence is to iterate it.

Related reading: Stein et al. p. 217-218 or Rosen
p. 162-167

5

http://www.hg.schaathun.net/DisMath/video2015/Week09/recurrence03.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week09/recurrence03.mp4
http://www.hg.schaathun.net/DisMath/Week09/recurrence03.pdf

Theory

Geometric Series
Recurrence

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 3/Session 5/Video 4
Recorded: October 9, 2015

Prof Hans Georg Schaathun Geometric Series Session 3/5 (4) 1 / 5

OGG

MP4

Slides

Theorem 1 If a recurrence T (n) is given as,

T (n) =

{
b, when n = 0,

r · T (n− 1) + a, otherwise.

then we can write

T (n) = rn · b+ a
1− rn

1− r

Related reading: Stein et al. p. 217-218 or Rosen p. 162-167

Exercise Example

Recurrence
Exercise Example

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 3/Session 5/Video 5
Recorded: October 9, 2015

Prof Hans Georg Schaathun Recurrence Session 3/5 (5) 1 / 5

OGG

MP4

Slides

Problem 2.1 Iterate the recurrence to solve the fol-

lowing equation

T (n) = 1.5T (n− 1) + 1 T (0) = 0.

Use mathematical induction to prove that the solution

is correct.

Recall the recurrence for the Tower of Hanoi:

M(n) = 2M(n− 1) + 1 M(1) = 1

Exercise 2.1 Solve the following recurrences, and explain how they di�er from the re-

currence of the Tower of Hanoi (above):

M(n) = 2M(n− 1) + 1 M(0) = 0, (3)

M(n) = 3M(n− 1) + 1 M(1) = 1, (4)

M(n) = M(n− 1) + 2 M(1) = 1, (5)

T (n) = 0.5T (n− 1) + 2, T (0) = 0. (6)

Exercise 2.2 Prove the following formula for geometric series using mathematical in-

duction:
n−1∑
i=0

ri =
1− rn

1− r

6

http://www.hg.schaathun.net/DisMath/video2015/Week09/recurrence04.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week09/recurrence04.mp4
http://www.hg.schaathun.net/DisMath/Week09/recurrence04.pdf
http://www.hg.schaathun.net/DisMath/video2015/Week09/recurrence05.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week09/recurrence05.mp4
http://www.hg.schaathun.net/DisMath/Week09/recurrence05.pdf

Theory

Asymptotic running time
Growth of Functions

Prof Hans Georg Schaathun

Høgskolen i Ålesund

October 9, 2015

Prof Hans Georg Schaathun Asymptotic running time October 9, 2015 1 / 5

OGG

MP4

Slides

When we evaluate algorithms, we are not so inter-
ested in the precise number of operations, but more
in the behaviour of this number when the problem
size grows.

Related reading: Rosen p. p. 206-210

Theory

Big-O formalised
Growth of Functions

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Complexity 1
Recorded: October 9, 2015

Prof Hans Georg Schaathun Big-O formalised Complexity 1 1 / 7

OGG

MP4

Slides

De�nition 1 Let f : N → R and g : N → R. We

say that f(n) is O(g(n)) if there are constants c and
k such that

∀n ≥ k, |f(n)| ≤ c · |g(n)|

Related reading: Rosen p. p. 206-210

Exercise 2.3 Consider the function f(n) = n2+2n+14. Show that f(n) = O(n2). You
have to review the de�nition of Big-O and �nd suitable constants c and k.

Exercise 2.4 Review the number of swaps needed for insertion sort in the worst case.

What is the Big-O expression of this number? This is known as the (asymptotic) com-

plexity of the algorithm.

Exercise 2.5 Consider each of the recurrences in Exercise 2.1 and give Big-O expres-

sions for each of them.

3 Compulsory Exercises (Tuesday 20 October 2015)

Exercise 3.1 Write down Euclid's algorithm in recursive form and use mathematical

induction to prove that it correctly returns the highest common factor.

Exercise 3.2 Use mathematical induction to prove that

T (n) = 2T (n− 1) + 1 T (0) = 0

is equivalent to

T (n) = 2n − 1.

Exercise 3.3 Use mathematical induction to prove that

T (n) = T (n− 1) + n T (0) = 0

is equivalent to

T (n) =
(n+ 1)n

2
.

7

http://www.hg.schaathun.net/DisMath/video2015/Week09/asymptotics.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week09/asymptotics.mp4
http://www.hg.schaathun.net/DisMath/Week09/asymptotics.pdf
http://www.hg.schaathun.net/DisMath/video2015/Week09/bigo.ogv
http://www.hg.schaathun.net/DisMath/video2015/Week09/bigo.mp4
http://www.hg.schaathun.net/DisMath/Week09/bigo.pdf

Exercise 3.4 Solve the following recurrences:

T (n) = 4 · T (n− 1) + 1, T (0) = 0 (7)

T (n) = 2 · T (n− 1) + n, T (0) = 0. (8)

Exercise 3.5 Solve the following recurrences:

T (n) = r · T (n− 1) + 1, T (0) = 0 (9)

T (n) = r · T (n− 1) + sn, T (0) = 0 (10)

Exercise 3.6 Review the number of swaps needed for selection sort in the worst case.

What is the Big-O expression of this number? This is known as the (asymptotic) com-

plexity of the algorithm.

8

	Mathematical Induction (Wednesday 14 October 2015)
	Thursday
	Compulsory Exercises (Tuesday 20 October 2015)

