
Exercises Week 10

Recurrence trees

Hans Georg Schaathun

12th November 2015

Period 21�27 October 2015

Reading Stein et al cover this material in Chapter 4.

Programme This document details the programme for the week, including exercises and
pointers to other material. It is available in two versions:

1. as a PDF document.

2. as a web site. This depends on MathML and may require �refox/iceweasel to
display correctly.

The web version includes inline video. The pdf version shows a still image from
the video, providing a hyperlink directly to the video on the web site.

1 Wednesday 21 October

1.1 Recurrence trees

Related reading: Stein et al. p. 228-231+ or Rosen p. 359+,512

Theory
Analysing the Recurrence Trees
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We consider the number of multiplications needed to
calculate xe mod n using square and multiply. This
is a short example of the use of recurrence trees.
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This video from last year gives an example of a recur-
rence tree based on the Tower of Hanoi. It is similar
to the previous video, but not as well made.
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This third video, also from last years, uses a re-
currence tree to count the number of comparisons
needed for Merge Sort.

1. Algorithm MergeSort(A1, A2, . . . , An)

2. if n == 1, return A

3. B = MergeSortA1,2,...,bn/2c

4. C = MergeSortAbn/2c+1,bn/2c+2,...,n

5. return Merge B,C

Exercise 1.1 Draw a recursion tree for

T (n) = 3(T (n/3)) + n, when n ≥ 2, (1)

T (1) = 1. (2)

Assuming that n is a power of three, use the recursion tree to �nd an exact solution for

T (n).

Exercise 1.2 Draw a recursion tree for

T (n) = 2(T (n/4)) + 3n, when n ≥ 1, (3)

T (1) = 1. (4)

Assuming that n is a power of four, use the recursion tree to �nd an exact solution for

T (n).

Exercise 1.3 Consider again the recursion trees from Exercises 1.1 and 1.2. Discuss

what happens to the solution if you relax the assumption that n be a power of three (resp.

four).

Exercise 1.4 Revisit the recursion trees from Exercises 1.1 and 1.2. Use the diagrams

to �nd Big-O bounds on the two recurrence equations.
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Exercise 1.5 Consider an array A of objects, where each object o has a key k(o). Con-
sider an algorithm which takes a search key k0 as input and outputs an element o ∈ A so

that k0 = k(o).

1. Write pseudo-code for a search algorithm. How many objects must be considered

before the right element is found? Give answers for the worst case and the average

case.

2. Suppose the array A is sorted with keys k(o) in increasing order. How does that

a�ect searching? Write pseudo-code for a faster algorithm, taking advantage of the

search order. How many objects must now be considered in the worst case before

the right element is found?

Remark 1 The two search algorithms in Exercise 1.5 are called linear and binary

search respectively.

1.2 More on complexity
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De�nition 1 Let f : N → R and g : N → R. We

say that f(n) is O(g(n)) if there are constants c and
k such that

∀n ≥ k, |f(n)| ≤ c · |g(n)|

Related reading: Rosen p. 210+

Exercise Example

Algorithm Complexity
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Exercise 1.6 Consider the solution to the Tower of Hanoi.

What is the complexity, in terms of the number of disks n?

1 procedure HanoiMove (n) from s to t us ing a
2 i f n = 1 , then MoveDisc from s to t
3 else

4 HanoiMove (n− 1) from s to a us ing t
5 MoveDisc from s to t
6 HanoiMove (n− 1) from a to t us ing s

Related reading: Stein et al. p. 228-231 or Rosen p. 219+

Exercise 1.7 Consider

f(x) =

n∑
i=0

aix
i
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Prove that f(x) ∈ O(xn).

In other words, �nd c and k so that |f(x)| ≤ c |g(x)| for x ≥ k.

2 Thursday 22 October

2.1 Other types of mathematical induction
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Problem 2.1 Prove that every natural number

greater than 11 is the sum of a non-negative integer

multiple of 3 and a non-negative integer multiple of

7.

Exercise 2.1 Prove that every natural number greater than 7 is the sum of a non-

negative integer multiple of 3 and a non-negative integer multiple of 5.

Exercise 2.2 Prove that the Strong Principle of Mathematical induction is valid. (You

can use contradiction, following the pattern used in the Video introducing induction.)

Exercise 2.3 A set S can be de�ned as follows.

Either S is the empty set ∅, or S is the union S = S′ ∪ {x} of a set S′ and a singleton

set containing some element x.

Use structural induction to show that the number of possible subsets of S is 2n where

|S| = n is the number of elements of S.
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2.2 More on complexity
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We have seen how Big-O is used to give asymptotic
upper bounds. Similarly, we have Big-Ω as an asymp-
totic lower bound. And if we have the same Big-O
and -Ω bound, we write Big-Θ for it.

Related reading: Rosen p. 215-217

Theory
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Problem 2.2 Consider an arbitrary (unsorted) array A of

objects, and a search key k0. Every element x ∈ A has a key

k(x). Give an algorithm to return x such that k(x) = k0.

Problem 2.3 Consider an sorted array A of objects, and a

search key k0. Every element x ∈ A has a key k(x). Give an
algorithm to return x such that k(x) = k0.

Related reading: Rosen p. 196-198

Supporting theory
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Theorem 1 Consider a natural number a and real numbers

b ≥ 1, c > 0, and d ≥ 0. Given a recurrence of the form

T (n) =

{
aT (n/b) + nc for n > 1,

d for n = 1,

restricting n to powers of b, we get that

T (n) ∈


Θ(nc), if logba < c,

Θ(nc log n), if logba = c,

Θ(nlogb a), if logba > c.

(5)

Related reading: Stein et al. p. 244-247 or Rosen p. 516

Exercise 2.4 Consider the binary search:

1. How many comparisons are needed in the worst case? Give a recurrence equation.

2. Draw er recurrence tree.

3. Give a closed form expression solving the recurrence.
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Exercise 2.5 Give Big-O bounds for

1. linear search.

2. binary search.

Can the bounds be improved? Give Big-Θ bounds.

Exercise 2.6 How many multiplications are needed to calculate ax mod n in the worst

case, using square-and-multiply?

1. Give a recurrence equation in terms of x.

2. Solve the recurrence.

3. Give a Big-O bound on the complexity.

3 Compulsory Exercises (Tuesday 27 October 2015)

Exercise 3.1 Show that log10 n ∈ Θ(log2 n). (You need to �nd the constants k and c
for both the Big-O and Big-Ω bound.)

Exercise 3.2 Find exact solutions to the following recurrence equations

1. T (n) = 2(T (n/2)) + 1, T (1) = 1

2. T (n) = 2(T (n/3)) + n, T (1) = 1

Exercise 3.3 Find exact solutions to the following recurrence equations

1. T (n) = 3(T (n/2)) + n, T (1) = 1

2. T (n) = 2(T (n/2)) + n2, T (1) = 1

Exercise 3.4 Consider the claim there is no largest prime number. (In other words,

the set of prime numbers is in�nite.) Complete the following proof for the claim.

We make the proof by contradiction, so we assume that there is a largest prime number

which we call p.

Let N be one more than the product of all the primes from 2 to p inclusive. In other

words

N = 1 +
n∏

i=1

pi,

where p1, p2, . . . , pn is the list of all primes from 2 to p.

We can show that N is not divisible by any prime pi ≤ p because N mod p′ = 1 by the

de�nition of N .

...
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Exercise 3.5 Consider the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . .. Let fn denote the

nth number in this sequence. Give a recursive de�nition of fn.

Exercise 3.6 Use mathematical induction to show that for n ≥ 3 we have

fn >

(
1 +
√

5

2

)n−2

where fn is the nth number of the Fibonacci sequence.
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