Discrete Mathematics Welcome

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2014 - Week 1

- Why I teach this module?
- What is discrete mathematics?
- The module
- Prerequisites
- 5 Pseudo code
- Exercises

The lecturer

- cand.scient. in industrial and applied mathematics and informatics
 - specialised in coding theory and cryptography
 - key applications of discrete mathematics
- dr.scient. 2002 in Coding theory
- post.doc. 2003-2006 in coding and cryptography at University of Bergen
- lecturer/senior lecturer 2006-2010 in multimedia security at University of Surrey
- professor HiÅ from 1 February 2011
 - inter- and multi-disciplinary research
 - software engineering

Mathematics and Computing

- Two angles to discrete mathematics
 - the computer science application
 - the abstract mathematics
- This module is mathematics and computing
 - not 50–50 it is 100% of both
- Application driven module
- using abstract thinking and formalism to an end

- Why I teach this module?
- What is discrete mathematics?
- The module
- Prerequisites
- 5 Pseudo code
- 6 Exercises

Discrete Mathematics

God made the natural numbers; all else is the work of man.

«Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk»

Leopold Kronecker (1823-1891)

- Natural numbers are those that you count
 - 1,2,3,4,5,...

(Some authors count zero as a natural number.)

Natural numbers

Discrete

- Natural numbers
- Countable objects
- Nothing between 2 and 3

Continuous

- Real and complex numbers
- Measurements and approximations
- Always points in between

•
$$(a,b) \leftarrow (a+b)/2$$

This is where computing and other engineering disciplines go their separate ways ...

Mathematics for computing

- Digital refer to digit meaning finger
 - you count on your fingers
- Computers deal with discrete objects
- Finite number of memory states definately countable
- Floating point numbers give a good approximation to continuous (real) numbers
 - but they are still discrete
- Discrete mathematics is the corner stone for computing

- Why I teach this module?
- What is discrete mathematics?
- 3 The module
- Prerequisites
- Pseudo code
- Exercises

Time table and work load

- 10 credits ECTS
 - Expected work load is 250–300h
 - about 16–20h(!) per week
- Three two-hour sessions per week (6h)
 - schedule another 10–14h per week to read, watch video, and prepare
 - at least 2h before each lecture

Sessions

- Three main learning activities
 - video clips to be watched in your own time
 - exercise sheets to practice skills and test understanding
 - supervised sessions collaborative problem solving, Q&A
 - student-led tutorials mandatory

You need to prepare for sessions.

Corrections

- Learning material is not static
- Changes will be made to
 - Correct errors
 - Correct omissions
 - Make material easier to understand
- Changes announced on web page

Make sure you are familiar with the latest version before the exam.

Let me know, if something is missing or not satisfactory.

Textbook

- Two options. Rosen or Stein et al
- The textbooks do not define the syllabus.
- Syllabus defined by
 - exercises
 - videos

Student-led tutorials

- Solve assigned problems
 - prepare to present solutions
- Attend class
 - tick problems you can present on the class list
- For each problem,
 - a random student is appointed to present the solution
- To sit the exam, you need 40% problems ticked
- If you bluff and cannot present when called,
 - all ticks of the day are cancelled

Web page

- http://www.hg.schaathun.net/DisMath/
- All material is found here.
- Some is password protected. See fronter for password.
- Backup: http://kerckhoffs.schaathun.net/DisMath/

Contact me: hasc@hials.no

Remember copyright. Redistribution of the material is prohibited.

Technical issues

- Video (mpeg4 or ogg/theora)
 - mplayer, vlc, QuickTime
 - should play directly in most browsers (chromium, Safari)
- Web pages with MathML
 - use firefox or iceweasel (not chrome/chromium)
- clean slides (PDF) should work without trouble
- slide notes (PDF with annotations)
 - Firefox plugin may not show annotations
 - Works in Safari, (Mac) preview, okular, skim, etc.

Let me know, if you have any technical problems.

- Why I teach this module?
- What is discrete mathematics?
- The module
- Prerequisites
- Pseudo code
- Exercises

Prerequisites

- What is a set?
- What is a function?
- What is a matrix?

Set theory

$$S = \{1, 2, 3\}$$

 $T = \{1, 5, a\}$
 $S \cup T = ???$
 $S \cap T = ???$
 $S \setminus T = ???$

Function

$$f:A\to B$$
$$f(x)=$$

- domain
- range
- co-domain
- function value or return value

Autumn 2014 - Week 1

Linear algebra

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.5 & 0.2 \\ 0.1 & 0 \end{bmatrix}$$

$$B \cdot A = ???$$

$$B + A = ???$$

$$A^{T} = ???$$

- Why I teach this module?
- What is discrete mathematics?
- The module
- Prerequisites
- Pseudo code
- Exercises

Pseudo-code

What is pseudo code?

Input Array A of length n

Output The same array A sorted in place.

```
for out_idx := 1 to n-1
  for in_idx := out_idx+1 to n
    if A[out_idx] > A[in_idx]
        swap A[out_idx] with A[in_idx]
```

Pseudo-code

What is pseudo code?

Input Array A of length n

Output The same array A sorted in place.

```
for out_idx := 1 to n-1
  for in_idx := out_idx+1 to n
    if A[out_idx] > A[in_idx]
        swap A[out_idx] with A[in_idx]
```

Pseudo-code

- Explain algorithms
- Human readers
- No standard syntax
- Mix elements from
 - Plain English
 - Well-known programming languages
 - Mathematical notation
- Choose the most readable language

Example of variation

All of these lines express the same thing.

- if A[out_idx] >= A[in_idx]
- if $A[out_idx] \ge A[in_idx]$
- if $A_i \geq A_j$

The variability and inconsistency will be evident in this module.

- Why I teach this module?
- What is discrete mathematics?
- The module
- Prerequisites
- Pseudo code
- 6 Exercises

Exercises

- Repetition
 - Set theory
 - 2 Functions
- Testing
 - web page; can you access it?
 - videos: do they play on your system?

