Pseudo-Random Number Generators
Functional Programming and Intelligent Algorithms

Prof Hans Georg Schaathun

Hegskolen i Alesund
14th February 2017




Randomness

1. What is randomness?




Randomness

1. What is randomness?
2. How do we create probabilistic computer programs?




Randomness

1. What is randomness?
2. How do we create probabilistic computer programs?
3. l.e. how do we make the computer act at random?




Two options




Two options

True randomness uses physical sources of entropy

1. /dev/random On many systems
2. random-fu in Haskell




Two options

True randomness uses physical sources of entropy

1. /dev/random on many systems
2. random-fu in Haskell

Pseudo-random number generators (PRNG) are deterministic but
random-/ooking
— random, standard package in Haskell
— random-t f, more recent Haskell package




Linear Congruential Generators

X;=a-+cxi_y mod m,
Xp is a given seed

— Pseudo-random sequence [xp, X1, Xz, . . .]
— Aka. Lehmer’s algorithm




Ciphers in counter mode

.ek(m)llllli]]]l]"""'l

e \

Alice —
Eve
Pseudo-random sequence
[X07 X1, X2, .. ]

x; = ex(i)

Xp is a given seed
5 ® NTNU



The PRNG is a state machine




The PRNG is a state machine




The PRNG is a state machine

— next :: State —> (State, Int)




The PRNG is a state machine

— next :: State —> (State, Int)
— Lehmer: next s = (s’,s’)
where s’ = (a + x*s) ‘mod' m

6 ®@NTNU



The PRNG is a state machine

— next :: State —> (State, Int)
— Lehmer: next s = (s’,s’)
where s’ = (a + x*xs) ‘mod' m
— Cipher:next s = (s + 1 ‘mod‘ m, encrypt k s)

6 ®@NTNU



random-t £ package

1. next :: TFGen -> (TFGen,Word32)

Exercise

Given a TFGen object, how do you generate an random, infinite list
of Word32 objects?




Splitting a PRNG

1. split :: TFGen —-> (TFGen, TFGen)
2. (g’ ,newstate) = split g

3. Use g’ to generate the list

4. newstate is your new state




Where do you get the initial state?




Where do you get the initial state?

1. Hardcode an arbitrary seed
2. Use initialisation functions in the library
2.1 initTFGen
3. Use a library which provides true random values
e random-fu




Tuning parameters

1. Distribution of random initial weights?
2. fin the sigmoid function?
3. Number of iterations?




Some guidelines

— Weights: —1/v/n<w <1/y/n
e where nis the number of inputs to the layer

— The weights should have similar magnitude
— Small g — 3 <3
1. 8 =1is a good starting point




Number of epochs




Exercise

— Random starting weights

1. initNeuron
2. initNetwork

— Test your network
— Experiment by varying
1. magnitude of initial weights

2. 8

3. number of epochs




