
1

Pseudo-Random Number Generators
Functional Programming and Intelligent Algorithms

Prof Hans Georg Schaathun

Høgskolen i Ålesund

14th February 2017



Randomness

1. What is randomness?

2. How do we create probabilistic computer programs?
3. I.e. how do we make the computer act at random?

2



Randomness

1. What is randomness?
2. How do we create probabilistic computer programs?

3. I.e. how do we make the computer act at random?

2



Randomness

1. What is randomness?
2. How do we create probabilistic computer programs?
3. I.e. how do we make the computer act at random?

2



Two options

True randomness uses physical sources of entropy
1. /dev/random on many systems
2. random-fu in Haskell

Pseudo-random number generators (PRNG) are deterministic but
random-looking
— random, standard package in Haskell
— random-tf, more recent Haskell package

3



Two options

True randomness uses physical sources of entropy
1. /dev/random on many systems
2. random-fu in Haskell

Pseudo-random number generators (PRNG) are deterministic but
random-looking
— random, standard package in Haskell
— random-tf, more recent Haskell package

3



Two options

True randomness uses physical sources of entropy
1. /dev/random on many systems
2. random-fu in Haskell

Pseudo-random number generators (PRNG) are deterministic but
random-looking
— random, standard package in Haskell
— random-tf, more recent Haskell package

3



Linear Congruential Generators

xi = a + cxi−1 mod m,
x0 is a given seed

— Pseudo-random sequence [x0, x1, x2, . . .]

— Aka. Lehmer’s algorithm

4



Ciphers in counter mode

Alice Bob

Eve

ek (m)

xi = ek (i)
x0 is a given seed

Pseudo-random sequence
[x0, x1, x2, . . .]

5



The PRNG is a state machine

s1
s2 s3

s4

s5s6s7

next next
next

next
nextnext

x1 x2

x3

x4x5x6

— next :: State -> (State,Int)

— Lehmer: next s = (s’,s’)
where s’ = (a + x*s) ‘mod‘ m

— Cipher: next s = (s + 1 ‘mod‘ m, encrypt k s)

6



The PRNG is a state machine

s1
s2 s3

s4

s5s6s7

next next
next

next
nextnext

x1 x2

x3

x4x5x6

— next :: State -> (State,Int)

— Lehmer: next s = (s’,s’)
where s’ = (a + x*s) ‘mod‘ m

— Cipher: next s = (s + 1 ‘mod‘ m, encrypt k s)

6



The PRNG is a state machine

s1
s2 s3

s4

s5s6s7

next next
next

next
nextnext

x1 x2

x3

x4x5x6

— next :: State -> (State,Int)

— Lehmer: next s = (s’,s’)
where s’ = (a + x*s) ‘mod‘ m

— Cipher: next s = (s + 1 ‘mod‘ m, encrypt k s)

6



The PRNG is a state machine

s1
s2 s3

s4

s5s6s7

next next
next

next
nextnext

x1 x2

x3

x4x5x6

— next :: State -> (State,Int)

— Lehmer: next s = (s’,s’)
where s’ = (a + x*s) ‘mod‘ m

— Cipher: next s = (s + 1 ‘mod‘ m, encrypt k s)

6



The PRNG is a state machine

s1
s2 s3

s4

s5s6s7

next next
next

next
nextnext

x1 x2

x3

x4x5x6

— next :: State -> (State,Int)

— Lehmer: next s = (s’,s’)
where s’ = (a + x*s) ‘mod‘ m

— Cipher: next s = (s + 1 ‘mod‘ m, encrypt k s)

6



random-tf package

1. next :: TFGen -> (TFGen,Word32)

Exercise
Given a TFGen object, how do you generate an random, infinite list
of Word32 objects?

7



Splitting a PRNG

1. split :: TFGen -> (TFGen,TFGen)

2. (g’,newstate) = split g

3. Use g’ to generate the list
4. newstate is your new state

8



Where do you get the initial state?

1. Hardcode an arbitrary seed
2. Use initialisation functions in the library

2.1 initTFGen

3. Use a library which provides true random values
• random-fu

9



Where do you get the initial state?

1. Hardcode an arbitrary seed
2. Use initialisation functions in the library

2.1 initTFGen

3. Use a library which provides true random values
• random-fu

9



Tuning parameters

1. Distribution of random initial weights?
2. β in the sigmoid function?
3. Number of iterations?

10



Some guidelines

— Weights: −1/
√

n ≤ w ≤ 1/
√

n
• where n is the number of inputs to the layer

— The weights should have similar magnitude
— Small β — β ≤ 3

1. β = 1 is a good starting point

11



Number of epochs

12



Exercise

— Random starting weights
1. initNeuron
2. initNetwork

— Test your network
— Experiment by varying

1. magnitude of initial weights
2. β
3. number of epochs

13


