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Randomness

1. What is randomness?
2. How do we create probabilistic computer programs?
3. l.e. how do we make the computer act at random?
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Two options

True randomness uses physical sources of entropy

1. /dev/random on many systems
2. random-fu in Haskell

Pseudo-random number generators (PRNG) are deterministic but
random-/ooking
— random, standard package in Haskell
— random-t f, more recent Haskell package




Linear Congruential Generators

X;=a-+cxi_y mod m,
Xp is a given seed

— Pseudo-random sequence [xp, X1, Xz, . . .]
— Aka. Lehmer’s algorithm




Ciphers in counter mode
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Pseudo-random sequence
[X07 X1, X2, .. ]

x; = ex(i)

Xp is a given seed
5 ® NTNU
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The PRNG is a state machine

— next :: State —> (State, Int)
— Lehmer: next s = (s’,s’)
where s’ = (a + x*s) ‘mod' m
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The PRNG is a state machine

— next :: State —> (State, Int)
— Lehmer: next s = (s’,s’)
where s’ = (a + x*xs) ‘mod' m
— Cipher:next s = (s + 1 ‘mod‘ m, encrypt k s)

6 ®@NTNU



random-t £ package

1. next :: TFGen -> (TFGen,Word32)

Exercise

Given a TFGen object, how do you generate an random, infinite list
of Word32 objects?




Splitting a PRNG

1. split :: TFGen —-> (TFGen, TFGen)
2. (g’ ,newstate) = split g

3. Use g’ to generate the list

4. newstate is your new state
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Where do you get the initial state?

1. Hardcode an arbitrary seed
2. Use initialisation functions in the library
2.1 initTFGen
3. Use a library which provides true random values
e random-fu




Tuning parameters

1. Distribution of random initial weights?
2. fin the sigmoid function?
3. Number of iterations?




Some guidelines

— Weights: —1/v/n<w <1/y/n
e where nis the number of inputs to the layer

— The weights should have similar magnitude
— Small g — 3 <3
1. 8 =1is a good starting point




Number of epochs




Exercise

— Random starting weights

1. initNeuron
2. initNetwork

— Test your network
— Experiment by varying
1. magnitude of initial weights

2. 8

3. number of epochs




