
1

Recursion and problem solving
Functional Programming in Haskell

Prof Hans Georg Schaathun

Høgskolen i Ålesund

18th January 2016

Outline

Motivation

Defining functions

Modularisation

Recursion

Summary

2

Problem Solving

How do you eat an elephant?

1. Take one small piece and eat it.
2. If there is more elepant left, then repeat from start.

3

Problem Solving

How do you eat an elephant?

1. Take one small piece and eat it.
2. If there is more elepant left, then repeat from start.

3

Functional Programming

How do you write a functional program?

1. Write one small, useful function.
2. If your last function does not complete the program, then

repeat from start.

4

Functional Programming

How do you write a functional program?

1. Write one small, useful function.
2. If your last function does not complete the program, then

repeat from start.

4

Outline

Motivation

Defining functions

Modularisation

Recursion

Summary

5

Simple functions

— Functions can be exceedingly simple
• addTwo :: Integer -> Integer
• addTwo a = a + 2

— Functions can have several arguments
• polynomial :: Double -> Double -> Double
• polynomial a b = 2*aˆ2 + 3*bˆ2 + a*b + a +
10*b - 50

— Functions may be exceedingly messy
— Functions should be simple and comprehensible
— Ten simple functions is better than one incomprehensible one

6

Pattern Matching

— Function evaluation using pattern matching
• matching actual arguments in the function call
• ... against formal arguments in the function definition

— For instance
• Definition: mul a b = a*b
• Call: mul 5 10

1. a← 5
2. b ← 10

7

Patterns with Constants

— Formal arguments need not be simple symbols
• funny 0 b = -b
• funny a 0 = aˆ2
• funny a b = b*a

— The call funny 5 10 uses the third defintion
• First definition invalid, because 5 does not match 0
• Second definition invalid, because 10 does not match 0
• a← 5, b ← 10 is OK

— The first valid pattern is used
— A common example

• myXOR False x = x
• myXOR True x = not x

8

Guards

— Pattern matching allows definition of multiple cases
• not all case handling can be done with patterns

— myAbs a | a < 0 = -a

— myAbs a | a > 0 = a

— myAbs a | otherwise =
0

|a| =


−a, a < 0,
a, a > 0,
0, otherwise

— The first guard which evaluates to true is used.
— otherwise is an alias for True

9

Combining Guards in one Definition

— Usually we combine all guard in one definition

myAbs a | a < 0 = -a
| a > 0 = a
| otherwise = 0 |a| =


−a, a < 0,
a, a > 0,
0, otherwise

— Note the indentation of the guard lines (Lines 2–3)
• this is necessary to let Haskell know that it is part of the same

definitions as Line 1.

10

Local definitions

— Auxiliary definitions are often seen in mathematics

f (x) = cos y + sin y , where (1)

y = x2. (2)

— Local definitions in Haskell follow the same pattern
f x = cos y + sin y

where y = x^2

— Local definitions can only be used in the definition where they
appear

— The linebreak is optional, and can be placed elsewhere

11

Function types

— Functions of several parameters
• myAdd :: Double -> Double -> Double

— Why do we use arrows twice?

— Actually, myAdd takes one Double
• returns a function of type Double -> Double
• ... which in turn takes a second double to return the third double

— Partial application is possible
• myAdd 3 is a function Double -> Double

*Main> :type myAdd 3
myAdd 3 :: Double -> Double

12

Function types

— Functions of several parameters
• myAdd :: Double -> Double -> Double

— Why do we use arrows twice?
— Actually, myAdd takes one Double

• returns a function of type Double -> Double
• ... which in turn takes a second double to return the third double

— Partial application is possible
• myAdd 3 is a function Double -> Double

*Main> :type myAdd 3
myAdd 3 :: Double -> Double

12

Function types

— Functions of several parameters
• myAdd :: Double -> Double -> Double

— Why do we use arrows twice?
— Actually, myAdd takes one Double

• returns a function of type Double -> Double
• ... which in turn takes a second double to return the third double

— Partial application is possible
• myAdd 3 is a function Double -> Double

*Main> :type myAdd 3
myAdd 3 :: Double -> Double

12

Outline

Motivation

Defining functions

Modularisation

Recursion

Summary

13

Modularation

— Problems are always solved in parts
— A module is a part solution

• functional programs: functions
• OO programming: classes (object types)
• mathematical arguments:

1. quantities
2. functions
3. concepts

— Each module must be easy to understand
• intuitive purpose
• comprehensible definition

— Modules may be defined in terms of other modules

14

Functional programming

15

Outline

Motivation

Defining functions

Modularisation

Recursion

Summary

16

Recursion

— Many functions are defined in terms of themselves
— Fibonacci sequence

• f0 = 1
• f1 = 1
• fi = fi−1 + fi−2 when i ≥ 2

— This is called recurrence

f 0 = 1
f 1 = 1
f n = f (n-1) + f (n-2)

17

The Bisection Method

— Solve an equation 0 = f (x)
— Linear and quadratic equations are simple
— For many other equations we need numeric solutions
— The bisection method is one of the simplest
— Requires a known interval (l ,u) to search for a solution

• f (l) · f (u) < 0

— If u − l is very small, then either u or l is an approximate
solution

18

The Bisection Method

— If u − l is very small,
• then either u or l is an approximate solution

— If u − l is not small enough,
• find m = (u + l)/2
• is the root in (l ,m) or in (m,u)?
• repeat recursively on half the interval

19

Outline

Motivation

Defining functions

Modularisation

Recursion

Summary

20

Summary

— Split a problem into smaller pieces
• standard approach to problem solving

— When the subproblem is simple enough, write a function
— Combine simple functions to solve larger problems
— Often functions can call themselves recursivly

• standard way to define functions in any paradigm
• necessary way to get iteration in functional programming
• common way to define mathematical functions

21

	Motivation
	Defining functions
	Modularisation
	Recursion
	Summary

