Recursion and problem solving

Functional Programming in Haskell

Prof Hans Georg Schaathun Høgskolen i Ålesund 18th January 2016

Motivation

Defining functions

Modularisation

Recursion

Summary

□ NTNU

Problem Solving

How do you eat an elephant?

Problem Solving

How do you eat an elephant?

- 1. Take one small piece and eat it.
- 2. If there is more elepant left, then repeat from start.

Functional Programming

How do you write a functional program?

Functional Programming

How do you write a functional program?

- 1. Write one small, useful function.
- 2. If your last function does not complete the program, then repeat from start.

Motivation

Defining functions

Modularisation

Recursion

Summary

NTNU

Simple functions

Functions can be exceedingly simple

- addTwo :: Integer -> Integer
- addTwo a = a + 2
- Functions can have several arguments
 - polynomial :: Double -> Double -> Double
 - polynomial a b = 2*a² + 3*b² + a*b + a + 10*b - 50
- Functions may be exceedingly messy
- Functions should be simple and comprehensible
- Ten simple functions is better than one incomprehensible one

Pattern Matching

- Function evaluation using pattern matching
 - matching actual arguments in the function call
 - ... against formal arguments in the function definition
- For instance
 - Definition: mul a b = a*b
 - Call: mul 5 10
 - 1. $a \leftarrow 5$ 2. $b \leftarrow 10$

Patterns with Constants

Formal arguments need not be simple symbols

- funny 0 b = -b
- funny a $0 = a^2$
- funny a b = b*a
- The call funny 5 10 uses the third definiton
 - First definition invalid, because 5 does not match 0
 - Second definition invalid, because 10 does not match 0
 - *a* ← 5, *b* ← 10 is OK
- The first valid pattern is used
- A common example
 - myXOR False x = x
 - myXOR True x = not x

Guards

Pattern matching allows definition of multiple cases

- not all case handling can be done with patterns
- myAbs a | a < 0 = -a
- myAbs a | a > 0 = a
- $|a| = \begin{cases} -a, & a < 0, \\ a, & a > 0, \\ 0 & \text{otherwise} \end{cases}$ — myAbs a | otherwise = 0 0
- The first guard which evaluates to true is used.
- otherwise is an alias for True

Combining Guards in one Definition

- Usually we combine all guard in one definition

- Note the indentation of the guard lines (Lines 2–3)
 - this is necessary to let Haskell know that it is part of the same definitions as Line 1.

Local definitions

- Auxiliary definitions are often seen in mathematics

$$f(x) = \cos y + \sin y, \text{ where } (1)$$
$$y = x^2. \tag{2}$$

Local definitions in Haskell follow the same pattern

$$f x = \cos y + \sin y$$

where y = x^2

- Local definitions can only be used in the definition where they appear
- The linebreak is optional, and can be placed elsewhere

Function types

- Functions of several parameters

• myAdd :: Double -> Double -> Double

— Why do we use arrows twice?

Function types

- Functions of several parameters
 - myAdd :: Double -> Double -> Double
- Why do we use arrows twice?
- Actually, myAdd takes one Double
 - returns a function of type Double -> Double
 - ... which in turn takes a second double to return the third double

Function types

- Functions of several parameters
 - myAdd :: Double -> Double -> Double
- Why do we use arrows twice?
- Actually, myAdd takes one Double
 - returns a function of type Double -> Double
 - ... which in turn takes a second double to return the third double
- Partial application is possible
 - myAdd 3 is a function Double -> Double

```
*Main> :type myAdd 3
myAdd 3 :: Double -> Double
```


Motivation

Defining functions

Modularisation

Recursion

Summary

Modularation

- Problems are always solved in parts
- A module is a part solution
 - functional programs: functions
 - OO programming: classes (object types)
 - mathematical arguments:
 - 1. quantities
 - 2. functions
 - 3. concepts
- Each module must be easy to understand
 - intuitive purpose
 - comprehensible definition
- Modules may be defined in terms of other modules

Functional programming

Motivation

Defining functions

Modularisation

Recursion

Summary

Recursion

- Many functions are defined in terms of themselves
- Fibonacci sequence
 - *f*₀ = 1
 - *f*₁ = 1
 - $f_i = f_{i-1} + f_{i-2}$ when $i \ge 2$

— This is called recurrence

$$f 0 = 1$$

 $f 1 = 1$
 $f n = f (n-1) + f (n-2)$

The Bisection Method

- Solve an equation 0 = f(x)
- Linear and quadratic equations are simple
- For many other equations we need numeric solutions
- The bisection method is one of the simplest
- Requires a known interval (I, u) to search for a solution
 - $f(I) \cdot f(u) < 0$
- If u l is very small, then either u or l is an approximate solution

The Bisection Method

- If u l is very small,
 - then either *u* or *l* is an approximate solution
- If u l is not small enough,
 - find m = (u + I)/2
 - is the root in (*I*, *m*) or in (*m*, *u*)?
 - · repeat recursively on half the interval

Motivation

Defining functions

Modularisation

Recursion

Summary

Summary

- Split a problem into smaller pieces
 - standard approach to problem solving
- When the subproblem is simple enough, write a function
- Combine simple functions to solve larger problems
- Often functions can call themselves recursivly
 - · standard way to define functions in any paradigm
 - necessary way to get iteration in functional programming
 - · common way to define mathematical functions

