
1

List Processing
Composite Data Types in Haskell

Prof Hans Georg Schaathun

Høgskolen i Ålesund

22nd January 2016



Outline

Generic definitions — Polymorphism

Finding more functions

2



Polymorphism

— length :: [Integer] -> Integer

— length :: [Double] -> Integer

— length :: [Bool] -> Integer

— Do we have to make our own for [Customer]?

No, we have polymorphism

— length :: [a] -> a

— a is an arbitrary type

3



Polymorphism

— length :: [Integer] -> Integer

— length :: [Double] -> Integer

— length :: [Bool] -> Integer

— Do we have to make our own for [Customer]?

No, we have polymorphism

— length :: [a] -> a

— a is an arbitrary type

3



Another example

1. zip :: [a] -> [b] -> [(a,b)]

2. Two arbitrary types a and b

3. zip [’a’..’f’] [0..]
→

[(’a’,0),(’b’,1),(’c’,2),(’d’,3),(’e’,4),(’f’,5)]

4



Recursion

Example

length [] = 0
length (x:xs) = 1 + length xs

Example

pair [] = []
pair (x1:x2:xs) = (x1,x2):pair xs

5



Overloading

— Polymorphic functions
1. one definition for multiple types
2. e.g. fst (x,y) = x

— Overloading
1. one function name for different definitions
2. different definitions for different types
3. e.g. x == y

— We will get back to overloading later

6



Outline

Generic definitions — Polymorphism

Finding more functions

7



Some list functions

!! [a] -> Int -> a get element by index
head last [a] -> a get first/last element
tail init [a] -> Int -> [a] get all elements but

the first/last
reverse [a] -> [a] reverse order
replicate Int -> a -> [a] a list repeating the

same element

8



Standard libraries

1. Prelude is loaded by default
2. Load other standard modules

• import Data.List
• import Data.Array

3. Install new packages
• cabal install easyplot

9



The Haskell Platform

1. Compiler and interpreter: GHC/GHCi
2. Standard libraries
3. Package management tool: cabal
4. C/Haskell interface tool: Hsc2hs
5. Other tools

10


	Generic definitions — Polymorphism
	Finding more functions

