
1

Monads and State machines
Functional Programming and Intelligent Algorithms

Prof Hans Georg Schaathun

Høgskolen i Ålesund

14th February 2017



The state machine

s1
s2 s3

s4

s5s6s7

next next
next

next
nextnext

x1 x2

x3

x4x5x6

— next :: State -> (State,Int)

— Lehmer: next s = (s’,s’)
where s’ = (a + x*s) ‘mod‘ m

— Cipher: next s = (s + 1 ‘mod‘ m, encrypt k s)

2



State machines in functional programming

What is special about state in functional programming?

Haskell uses monads

3



State machines in functional programming

What is special about state in functional programming?

Haskell uses monads

3



Hiding in the Clouds

4



Monadic and non-monadic functions

Pure functions f :: a -> b
g :: b -> c

Monadic functions fm :: a -> MyMonad b
gm :: b -> MyMonad c

Return return :: x -> MyMonad x

5



Function composition

Pure functions

Monads
(Binding operations)

1. h = f ◦ g
2. h(x) = f (g(x))

1. fm :: a -> MyMonad b

2. gm :: b -> MyMonad c

3. hm = fm »= gm

4. hm :: a -> MyMonad c

Or in Haskell

Equivalently

1. h = f . g

2. h x = f $ g x

1. hm x = do
1.1 y <- fm x
1.2 gm y

6



Function composition

Pure functions
Monads

(Binding operations)

1. h = f ◦ g
2. h(x) = f (g(x))

1. fm :: a -> MyMonad b

2. gm :: b -> MyMonad c

3. hm = fm »= gm

4. hm :: a -> MyMonad c

Or in Haskell

Equivalently

1. h = f . g

2. h x = f $ g x

1. hm x = do
1.1 y <- fm x
1.2 gm y

6



Function composition

Pure functions
Monads

(Binding operations)

1. h = f ◦ g
2. h(x) = f (g(x))

1. fm :: a -> MyMonad b

2. gm :: b -> MyMonad c

3. hm = fm »= gm

4. hm :: a -> MyMonad c

Or in Haskell Equivalently

1. h = f . g

2. h x = f $ g x

1. hm x = do
1.1 y <- fm x
1.2 gm y

6



Mixing pure and monadic functions

hm x = do
y <- fm x
let z = g y
return z

fx :: MyMonad a -> b is impossible

7



Mixing pure and monadic functions

hm x = do
y <- fm x
let z = g y
return z

fx :: MyMonad a -> b is impossible

7



The State Monad

8



A State Machine for Random Numbers

1. import Data.Word32

2. getRandom :: State TFGen Word32

3. getRandom = do
3.1 s <- get
3.2 let (r,s’) = next s
3.3 put s’
3.4 return r

9



Running the state machine

1. f :: IO State TFGen a

2. g :: TFGen

3. runState f g :: (a,TFGen)

10



Summary

— The State monad enables a PRNG state
• without explicitly passing the state in and out of every function

— To use it, functions must be monadic
• just like IO

— Compose stateful actions using do
• or, if you prefer, >>= and >>

11


