Data preprocessing

Functional Programming and Intelligent Algorithms

Que Tran Høgskolen i Ålesund 20th March 2017

Why data preprocessing?

- Real-world data tend to be dirty

- incomplete: lacking attribute values, certain attributes of interest, or containing only aggregate data
- noisy: containing errors, outlier values
- inconsistent: containing discrepancies in codes
- "How can the data be preprocessed in order to help improve the quality of the data and, consequently, of the mining results?"

Main tasks in Data preprocessing

Data transformation

Forms of data preprocessing

Data cleaning attempts to:

- fill in missing values
- smooth noisy data
- identify or remove outliers
- resolve inconsistencies.

Manage missing values:

- Ignore the instance
- Fill in the missing value manually
- Use a global constant to fill in the missing value
- Use the attribute mean to fill in the missing value
- Use the attribute mean for all instances belonging to the same class as the given instance
- Use the most probable value to fill in the missing value

Noise data

- What is noise?
- Manage noise data:
 - Binning
 - Regression
 - Clustering

Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15 Bin 2: 21, 21, 24 Bin 3: 25, 28, 34

Smoothing by bin means:

Bin 1: 9, 9, 9 Bin 2: 22, 22, 22 Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15 Bin 2: 21, 21, 24 Bin 3: 25, 25, 34

Figure 2.11 Binning methods for data smoothing.

Figure 2.12 A 2-D plot of customer data with respect to customer locations in a city, showing three data clusters. Each cluster centroid is marked with a "+", representing the average point in space for that cluster. Outliers may be detected as values that fall outside of the sets of clusters.

Manage inconsistent data:

- Correct inconsistent data manually using external references
- Correct inconsistent data semi-automatically using various tools (Data scrubbing tools, Data auditing tools, Data migration tools...)

Data integration

- Combines data from multiple sources into a coherent data store
- Some important issues: entity identification problem (schema integration, object matching), redundancy, data value conflicts

Data transformation

- The data are transformed into forms appropriate for mining
- Data transformation involves:
 - Generalization
 - Normalization

Data Transformation

- Min-max normalization

•
$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- z-score normalization

•
$$V' = \frac{V - \bar{A}}{\sigma_A}$$

- Obtain a reduced representation of the data set that is much smaller in volume, yet produce better or (almost) the same analytical results.
- Why?
 - Computational efficiency
 - Avoid Curse of Dimensionality

Curse of Dimensionality

High dimension

- large volume, sparse data
- flexible model
- fits training data too well

Curse of Dimensionality

Data reduction involves:

- Feature selection
- Feature extraction

Feature selection:

- Reduces the data set size by removing irrelevant or redundant features.
- Searches for the optimal subset of features
- Feature selection methods are typically greedy
- Basic heuristic methods include the following techniques:
 - Stepwise forward selection
 - Stepwise backward elimination
 - Combination of forward selection and backward elimination
 - Decision tree induction

Feature selection:

Forward selection	Backward elimination	Decision tree induction
Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$	Initial attribute set: { A_1 , A_2 , A_3 , A_4 , A_5 , A_6 }	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$
$ \begin{cases} \{ \} \\ \Rightarrow \{ A_1 \} \\ \Rightarrow \{ A_1, A_4 \} \\ \Rightarrow \text{Reduced attribute set:} \\ \{ A_1, A_4, A_6 \} \end{cases} $	$ = \{A_1, A_4, A_5, A_6\} $ => Reduced attribute set: $ \{A_1, A_4, A_6\} $	$A_{4}?$ $A_{1}?$ $A_{6}?$ Y $A_{1}?$ $A_{6}?$ $A_{6}?$ $Class 1$ $Class 2$ $Class 1$ $Class 2$ $Class 2$ $Class 1$ $Class 2$

Greedy (heuristic) methods for attribute subset selection

Feature extraction:

- Reduces the data set size by transforming feature space to lower dimensional space
- New features do not tell the same meaning as original features
- Data reduction can be *lossless* or *lossy*
- A popular method: Principle Components Analysis (PCA)

FIGURE 10.6: Two different sets of coordinate axes. The second consists of a rotation and translation of the first and was found using Principal Components Analysis.

Principal Component Analysis:

- 1. PCA finds a new basis
- 2. First axis the principal component
 - ... explains most of the variation
- 3. Next axis chosen perpendicular to previous axes
 - ... to explain most of the remaining variation

PCA Algorithm:

- 1. Write *N* data points as rows of a matrix *X* (size $N \times M$)
- 2. For each column, subtract its mean to get B
- 3. Compute covariance $C = \frac{1}{N}B^{T}B$
- 4. Compute eigenvectors and eigenvalues of C
 - $V^{-1}CV = D$
 - D: diagonal matrix with eigenvalues
 - V: matrix of eigenvectors
- 5. Sort the columns of D in decreasing order of eigenvalues
 - apply same order to V
- 6. Discard columns with eigenvalue less than η
- 7. Transform data by multiplication with V

