
1

Improving Neural Networks
Functional Programming and Intelligent Algorithms

Que Tran

Høgskolen i Ålesund

20th March 2017

Design the Network

— Training algorithms (Gradient descent backpropagation,
Resilient backpropagation, Conjugate gradient
backpropagation)

— Error function (e.g. Mean squared error, cross-entropy)
— Activation functions (sigmoid, tanh, soft-max, ReLU)
— Network architecture (number of hidden layers, nodes per

layer)

2

Soft-max activation function

— It is most commonly used for classification problems where the
1-of-N output encoding is used.

— It can be written as:

yk = g(hk) =
exp(hk))∑

j exp(hj)
) (1)

3

Soft-max activation function

— The soft-max function rescales the outputs so that the
activations sum to 1 and lie between 0 and 1.

— The output from the soft-max layer can be interpreted of as a
probability distribution.

— Error at the output layer:

δok = tk − yk (2)

4

Overfitting

— Overfitting: model captures the noise of the data.
— Solutions:

• Increasing the amount of training data
• Reducing the network size
• Early stopping
• Regularization
• Dropout

5

Regularization

— Adding complexity penalty to the cost function
— Some techniques:

• L2 regularization
• L1 regularization

6

L2 Regularization

— Adding an extra term, called regularization term to the cost
function

C = C0 +
λ

2n

∑
w

w2 (3)

where C0 is the original, unregularized cost function, and
λ > 0 is known as the regularization parameter, and n is the
size of the training set

— The regularization term doesn’t include the biases

7

L2 Regularization

— Taking the partial derivatives:

∂C
∂w

=
∂C0

∂w
+
λ

n
w (4)

∂C
∂b

=
∂C0

∂b
(5)

— The learning rules:

b → b − η∂C0

∂b

w → w − η∂C0

∂w
− ηλ

n
w

=

(
1− ηλ

n

)
w − η∂C0

∂w

8

L1 Regularization

— Adding an extra term, called regularization term to the cost
function

C = C0 +
λ

n

∑
w

|w | (6)

— The regularization term doesn’t include the biases

9

L1 Regularization

— Taking the partial derivatives:

∂C
∂w

=
∂C0

∂w
+
λ

n
sgn(w) (7)

where sgn(w) is the sign of w , that is, +1 if w is positive, and
−1 if w is negative.

— The learning rules:

w → w − η∂C0

∂w
− ηλ

n
sgn(w)

10

L1 Regularization

— Issue: the partial derivative ∂C
∂w is not defined when w = 0.

— Apply the unregularized rule when w = 0
— Intuitively the effect of regularization is to shrink weights, and

when a weight is already 0, don’t need to shrink.

11

Dropout

— Modifying the network itself.
— The modified process:

• Randomly (and temporarily) deleting half the hidden neurons in
the network, while leaving the input and output neurons
untouched.

• Forward-propagate the input x through the modified network,
and then backpropagate the result, also through the modified
network

• Update the appropriate weights and biases.
• Repeat the process
• When we actually run the full network that means that twice as

many hidden neurons will be active. To compensate for that, we
halve the weights outgoing from the hidden neurons.

12

Dropout

13

Dropout

— Dropout as a form of model averaging
— Dropout as reducing complex co-adaptations of neurons

"This technique reduces complex co-adaptations of
neurons, since a neuron cannot rely on the presence
of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in
conjunction with many different random subsets of
the other neurons." (Alex Krizhevsky, Ilya Sutskever,
and Geoffrey Hinton (2012))

14

