GENETIC ALGORITHMS: THE BINARY GA

Date: Friday 1 April 2016
Course: Functional Programming and Intelligent Algorithms
Lecturer: Robin T. Bye

Components of binary GA

Algorithm flow

1. Define cost function, cost, variables. Select GA parameters.
2. Generate initial population.
3. Decode chromosomes.
4. Find cost for each chromosome.
5. Select mates for reproduction.
6. Mating.

Algorithm flow

7. Mutation.
8. Check stopping criteria

- IF (reached max number of iterations OR converged) THEN stop
- ELSE go to Step 3.

Figure 2.2 Flowchart of a binary GA.
Adapted from [1].

Variables and cost function

Nvar-dimensional problem \rightarrow chromosome has Nvar variables
(genes), $i=1, .$. , Nvar

- chrom = [p1, p2,...,pNvar]
- Cost $=f($ chrom $)=f(p 1, p 2, \ldots, p N v a r)$
- Example: 2D height map in xy-plane
- chrom = $[\mathrm{x}, \mathrm{y}]$
- cost $=$ height $=f($ chrom $)=f(x, y)$

Variables and cost function

- If too many variables \rightarrow slow GA
- Eg. $f=2 x+3 y+z / 10000+\sqrt{ } w / 9876$ with constraints $1 \leq x, y, z, w \leq 10$
- Due to constraints, z, w terms relatively small \rightarrow ignore: $f=2 x+3 y$
- Variable interaction (epistasis)
- GA good for medium/high interaction
- Random search good for high interaction
- Minimum-seeking good for low interaction

Encoding/decoding

- Encoding: Convert variable values to binary genes
- Decoding: Convert binary genes back to human-readable variable values
- Example:

Bin	Dec	Numbers	Alt. Numbers	Colour	Speed
00	0	10	13.75	Red	Slow
01	1	20	21.25	Green	Medium
10	2	30	28.75	Blue	Fast
11	3	40	36.25	Yellow	Superfast

Encoding/decoding

- Example continued:
- gene1 $=01 \Leftrightarrow$ medium
- gene2 $=10 \Leftrightarrow$ fast
- gene3 $=11 \Leftrightarrow$ superfast
- gene4 $=00 \Leftrightarrow$ slow
- chrom $=$ [gene1, gene2, gene3, gene4]
$=[01101100]=[$ med,fast,supfast,slow]

Encoding/decoding

- Goal: Sort categories in increasing order (slow,medium,fast,superfast)
- Cost: 0 for correct place, 1 for one place off, 2 for two places off, etc.
- [01101100] =[medium,fast,superfast,slow]

$$
\cdot \rightarrow \text { Cost }=1+1+1+3=6
$$

- [00100111] =[slow,fast,medium,superfast]
- \rightarrow Cost $=0+1+1+0=2$

Encoding/decoding

- Number of bits Nbits in chromosome:
- Ngene = number of bits in each gene/var
- Nvar = number of genes/variables
- Nbits $=$ Ngene \times Nvar $=$ number of bits

Population

- Set of Npop chromosomes
- Each chromosome has Nbits
- Represented as matrix of binary digits
- Dimensions are Npop \times Nbits
- Initial population randomly assigned:
- pop=round(rand(Npop, Nbits));

Natural selection

1. Rank chromosomes (low cost better)
2. Only keep best fraction (selection rate Xrate) of Npop chromosomes \rightarrow Nkeep
$=$ Xrate \times Npop chromosomes survives
3. Let kept chromosomes mate and replace discarded chromosomes

Pairing methods

- From top to bottom (1+2, 3+4, etc.)
- Uniform random pairing
- Weighted random pairing
- rank weighting
- cost weighting
- Tournament selection
- Others

Mating

- Randomly pick a crossover point
- Parent1 passes left-bits to offspring1 and right-bits to offspring2
- Parent2 passes left-bits to offspring 2 and right-bits to offspring1
- $\mathrm{p} 1=[\mathrm{L} 1 \mid \mathrm{R} 1], \mathrm{p} 2=[\mathrm{L} 2 \mid \mathrm{R} 2] \rightarrow$
- $\mathrm{o} 1=[\mathrm{L} 1 \mid \mathrm{R} 2], \mathrm{o} 2=[\mathrm{L} 2 \mid \mathrm{R} 1]$
- Other schemes exist

Elitism

- Always keep best chromosome in population and never mutate it!
- Do not throw away a good solution!

Next generation

- Insert offspring into population
- Recalculate costs and repeat process until
- convergence
- max number of iterations reached
- you are happy for some reason

Example 2D problem

Example 2D problem

Three-dimensional view of the cost surface with a view of Long's Peak.
Adapted from [1].

Example 2D problem

Encoding

TABLE 2.2 Binary Representations

Variable	Binary	Decimal	Value
Latitude	0000000	1	$40^{\circ} 15^{\prime}$
Latitude	1111111	128	$40^{\circ} 16^{\prime}$
Longitude	0000000	1	$105^{\circ} 36^{\prime}$
Longitude	1111111	128	$105^{\circ} 37^{\prime} 30^{\prime \prime}$

$$
\text { chromosome }=[\underbrace{1100011}_{x} \underbrace{0011001}_{y}]
$$

Adapted from [1].

Example 2D problem

Initial population

TABLE 2.3 Example Initial Population of 8 Random Chromosomes and Their Corresponding Cost	
Chromosome	Cost
$\mathbf{* 0 0 1 0 1 1 1 1 0 0 0 1 1 0}$	-12359
11100101100100	-11872
$* 00110010001100$	-13477
$* 00101111001000$	-12363
11001111111011	-11631
01000101111011	-12097
$* 11101100000001$	-12588
01001101110011	-11860

[^0]

Example 2D problem

Natural selection

TABLE 2.4 Surviving Chromosomes after a 50\%
Selection Rate

Best 50\%
 Nkeep = 4

Chromosome	Cost
$* 00110010001100$	-13477
$* 11101100000001$	-12588
$* 00101111001000$	-12363
$* 00101111000110$	-12359

$$
N_{\text {keep }}=X_{\text {rate }} N_{\text {pop }}
$$

Example 2D problem

Crossover

Figure 2.11 Two parents mate to produce two offspring. The offspring are placed into the population.

Example 2D problem

Create offspring and replace bad chromosomes
TABLE 2.7 Pairing and Mating Process of SinglePoint Crossover

Chromosome	Family	Binary String
3	$\mathrm{ma}(1)$	00101111001000
2	pa(1)	11101100000001
5	offspring $_{1}$	00101100000001
6	offspring $_{2}$	11101111001000
3	ma(2)	00101111001000
4	pa(2)	00101111000110
7	offspring $_{3}$	00101111000110
8	offspring $_{4}$	00101111001000

Example 2D problem

New population after mating

TABLE 2.8 Mutating the Population

Population after Mating	Population after Mutations	New Cost
00110010001100	00110010001100	-13477
11101100000001	11101100000001	-12588
00101111001000	00101111010000	-12415
00101111000110	00001011000111	-13482
00101100000001	00101000000001	-13171
11101111001000	11110111010010	-12146
00101111000110	00100111001000	-12716
00101111001000	00110111001000	-12103

Adapted from [1].

Example 2D problem

Members of population after first generation

Figure 2.12 A contour map of the cost surface with the 8 members at the end of the first generation.

Example 2D problem

New ranked population at start of second generation

New best \rightarrow chromosome	TABLE 2.9 New Ranked Population at the Start of the Second Generation	
	Chromosome	Cost
	00001011000111	-13482
	00110010001100	-13477
	00101000000001	-13171
	00100111001000	-12716
	11101100000001	-12588
	00101111010000	-12415
	11110111010010	-12146
	00110111001000	-12103

Example 2D problem

Population after crossover/mutation in 2nd generation TABLE 2.10 Population after Crossover and Mutation in the Second Generation

	Chromosome	Cost
Note that 2nd	00001011000111	-13482
best	00110000001000	-13332
chromosome	01101001000001	-12923
has been	0110011101000	-12128
replaced by	10100111000001	-12961
one with	10100010001000	-13237
higher cost	00110100001110	-13564
	00100010000001	-13246
		AdapR8d from [1].

Example 2D problem

Members of population after 2nd generation

Adap E^{Od} from [1].

Example 2D problem

- Example converged after only 3 gen's
- Height found: 14199 m

Figure 2.15 Graph of the mean cost and minimum cost for each generation. Ad3apted from [1].

References

[1] Haupt \& Haupt, Practical Genetic Algorithms, 2nd Ed., Wiley, 2004.

[^0]: * best chromosomes

