GENETIC ALGORITHMS: THE CONTINUOUS GA

Date: Friday 8 April 2016

Course: Functional Programming and Intelligent Algorithms Lecturer: Robin T. Bye

Components of the continuous GA

Algorithm flow

1. Define cost function, cost, variables. Select GA parameters.
2. Generate initial population.
3. Find cost for each chromosome.
4. Select mates for reproduction.
5. Mating.
6. Mutation.
7. Convergence check (repeat from 3)

Compared with the binary GA, there is no step for decoding chromosomes here

Figure 3.1 Flowchart of a continuous GA.
Adapted from [1].

Variables and cost function

- Nvar-dimensional problem \rightarrow chromosome has Nvar variables (genes), $i=1, .$. , Nvar
- chrom $=[\mathrm{p} 1, \mathrm{p} 2, \ldots, \mathrm{pNvar}]$
- Cost $=f($ chrom $)=f(p 1, p 2, \ldots, p N v a r)$
- Example: 2D height map in xy-plane
- chrom $=[x, y]$
- cost $=$ height $=f($ chrom $)=f(x, y)$

Variables and cost function

- No encoding to binary
- Use "continuous" values
- but limited by computer precision, eg.,
- floating points
- double precision points

Population

- Set of Npop chromosomes
- Each chromosome is Nvar row vector
- Represented as matrix of cts values
- Dimensions are Npop x Nvar
- All variables pi normalised to $0 \leq \mathrm{pi} \leq 1$
- "Unnormalise" in cost function
- Initial population randomly assigned:
- pop=rand(Npop,Nvar));

Unnormalisation

- Let
- phi be the highest value of p
- plo be the lowest value of p
- pnorm be the normalised value of p
- Then the unnormalised value of p is
p = (phi - plo)*pnorm + plo

Unnormalisation

- Example:
- Phi $=20$ and plo $=-20$
- pnorm $=0.75$
- Then the unnormalised value of p is

$$
\begin{aligned}
\text { p } & =(\text { phi }- \text { plo })^{*} \text { pnorm }+ \text { plo } \\
& =(20-(-20))^{*} 0.75+(-20)=40^{*} 0.75-20 \\
& =30-20=10
\end{aligned}
$$

Natural selection

1. Rank chromosomes (low cost better)
2. Only keep best fraction (=selection rate Xrate) of Npop chromosomes \Rightarrow Nkeep = Xrate \times Npop chromosomes survives
3. Let kept chromosomes mate and replace discarded chromosomes

Pairing methods

- From top to bottom (1+2, 3+4, etc.)
- Uniform random pairing
- Weighted random pairing
- rank weighting
- cost weighting
- Tournament selection
- Others

Mating

- Many approaches
- Simple method: Just swap variable values at random crossover points
- Problem: No new information introduced
- Must rely on mutation for new genes
- Blending method (Radcliffe): Combine values of parents into new values
- Blending limits values to interval of parents

Mating

- Problem with point crossover methods:

$$
\begin{gathered}
\text { parent }_{1}=\left[p_{m 1}, p_{m 2}, p_{m 3}, p_{m 4}, p_{m 5}, p_{m 6}, \ldots, p_{m N_{v a r}}\right] \\
\text { parent }_{2}=\left[p_{d 1}, p_{d 2}, p_{d 3}, p_{d 4}, p_{d 5}, p_{d 6}, \ldots, p_{d N_{v a r}}\right] \\
\text { offspring }_{1}=\left[p_{m 1}, p_{m 2}, \uparrow p_{d 3}, p_{d 4}, \uparrow p_{m 5}, p_{m 6}, \ldots, p_{m N_{v a r}}\right] \\
\text { offspring }_{2}=\left[p_{d 1}, p_{d 2},{ }_{\uparrow} p_{m 3}, p_{m 4}, \uparrow p_{d 5}, p_{d 6}, \ldots, p_{d N_{v a r}}\right] \\
\text { - Merely interchanging data! No new } \\
\text { genetic material generated! }
\end{gathered}
$$

Mating

- Blending method:
$-\quad$ pnew $=\beta^{*}$ pmn $+(1-\beta)^{*}$ pdn
- where
- β is random in range $[0,1]$
- pmn is nth variable in mum chromosome
- pdn is nth variable in dad chromosome
- which variables to blend?
- eg., all points to the right or left of crossover p
- only a selected few
- can also use different β for each h_{14} var

Mating

- Blending method:
- Works well on several interesting problems (Michalewicz, 1994)
- Problem: Values are bracketed by the extremes already present in the population \Rightarrow must use an extrapolation method to avoid this.

Mating

- Extrapolation method:
- Extrapolation introduce values outside range of parents
- Linear crossover:
- Three offspring
- \quad pnew $1=0.5 p m n+0.5 p d n$ (average)
- \quad pnew2 $=1.5 p m n-0.5 p d n$ (lower/higher)
- pnew3 $=-0.5 p m n+1.5 p d n$ (higher/lower)
- Variables outside bounds are discarded
- Best two offspring are kept
- Can use other factors than 0.5

Mating

Extrapolation method:

- Example where pmn $=4$, $\mathrm{pdn}=8$
- \quad pnew $1=0.5 p m n+0.5 p d n=2+4=6$ (average)
- pnew2 $=1.5 p m n-0.5 p d n=6-4=2$ (lower)
- pnew3 $=-0.5 p m n+1.5 p d n=-2+12=10$ (higher)
- We get a new lower, an average, and a new higher variable value

Mating

- Extrapolation + crossover (Haupt):

Crossover point: $\alpha=$ roundup $\left\{\right.$ random * $\left.N_{\text {var }}\right\}$

- Randomly select a variable for crossover

$$
\text { parent }_{1}=\left[p_{m 1} p_{m 2} \ldots p_{m \alpha} \ldots p_{m N_{v a r}}\right]
$$

Parents:

$$
\text { parent }_{2}=\left[p_{d 1} p_{d 2} \ldots p_{d \alpha} \ldots p_{d N_{v a r}}\right]
$$

Selected

$$
\begin{aligned}
& p_{\text {new } 1}=p_{m \alpha}-\beta\left[p_{m \alpha}-p_{d \alpha}\right] \\
& p_{\text {new } 2}=p_{d \alpha}+\beta\left[p_{m \alpha}-p_{d \alpha}\right]
\end{aligned}
$$ variables:

Mating

- Extrapolation + crossover (Haupt):

Offspring:

$$
\text { offspring }_{1}=\left[p_{m 1} p_{m 2} \ldots p_{\text {new } 1} \cdots p_{d N_{v a r}}\right]
$$

$$
\text { offspring }_{2}=\left[p_{d 1} p_{d 2} \ldots p_{\text {new } 2} \ldots p_{m N_{v a r}}\right]
$$

- All variables after crossover point are swapped in offspring
- β is a random value in range $[0,1]$
\rightarrow Limits offspring variables to bounds of parents
- Use $\beta>1$ for variables outside parent bounds \rightarrow Must then perform a check for out-ofbounds

Mutations

- Randomly mutate a fraction of values in list of chromosomes
- New random (normalised) values in $[0,1]$

Can introduce novelty (new things)

- Avoid early convergence to local minima
- Mutation rate $\mu(\mathrm{mu})$, eg. 20\%
- High mutation rate: Better exploration
- But slower convergence

Elitism

- Always keep best chromosome in population and never mutate it!
- Do not throw away a good solution!

Next generation

- Insert offspring into population
- Recalculate costs and repeat process until
- convergence
- max number of iterations reached
- you are happy for some reason

Example 2D problem

Test function $\mathrm{f} 7(\mathrm{x}, \mathrm{y})$

$$
x \sin (4 x)+1.1 y \sin (2 y)
$$

9.039, 8.668
minimum: $f(09039,08608)=-18.5547$
for $0 \leq x, y \leq 10$

Adapted from [1].

Example 2D problem

Initial population

Parents

TABLE 3.1 Example Initial Population of 8 Random Chromosomes and Their Corresponding Cost

x	y	Cost	Number	x	y	Cost
6.9745	0.8342	3.4766	1	7.7246	5.5655	-9.8884
0.30359	9.6828	5.5408	2	0.1876	8.9371	-8.0108
2.402	9.3359	-2.2528	3	2.6974	6.2647	-2.8957
* 0.18758	8.9371	-8.0108				
* 2.6974	6.2647	-2.8957				
* 5.613	0.1289	-2.4601				
* 7.7246	5.5655	-9.8884				
6.8537	9.8784	13.752				

* best chromosomes

Adapted from [1].

Example 2D problem

Pairs of random numbers to select mates:
$(0.6710,0.8124) \Rightarrow(2,3)$ from cumulative rank in table ($0.7930,0.3039) \Rightarrow(3,1)$ from cumulative rank in table

TABLE 2.5 Rank Weighting

n	Chromosome	P_{n}	$\sum_{i=1}^{n} \mathrm{P}_{i}$
1	00110010001100	0.4	0.4
2	11101100000001	0.3	0.7
3	00101111001000	0.2	0.9
4	00101111000110	0.1	1.0

$\underset{25}{\text { Adapted from [1]. }}$

Example 2D problem

Create offspring and replace bad chromosomes
TABLE 3.3 Pairing and Mating Process of SinglePoint Crossover Chromosome Family Binary String Cost

Mates $(2,3)$

Mates $(3,1)$

2	$\mathrm{ma}(1)$	0.18758	8.9371
3	$\mathrm{pa}(1)$	2.6974	6.2647
5	offspring $_{1}$	0.2558	6.2647
6	offspring $_{2}$	2.6292	8.9371
3	$\mathrm{ma}(2)$	2.6974	6.2647
1	$\mathrm{pa}(2)$	7.7246	5.5655
7	offspring $_{3}$	6.6676	5.5655
8	offspring $_{4}$	3.7544	6.2647

Example 2D problem

2nd and 3rd generations

TABLE 3.6 Population after Crossover and Mutation TABLE 3.8 Ranking of Generation 3 from Least to in the Second Generation Most Cost

x	y	Cost	x	y	Cost
9.1602	5.5655	-14.05	9.0215	8.6806	-18.53
2.6292	8.9371	-10.472	9.1602	8.6892	-17.494
7.7246	6.4764	-1.1376	9.1602	8.323	-15.366
0.18758	8.9371	-8.0108	9.1602	5.5655	-14.05
2.6292	5.8134	-7.496	9.1602	8.1917	-13.618
9.1602	8.6892	-17.494	2.6292	8.9371	-10.472
7.7246	8.6806	-13.339	7.7246	1.8372	-4.849
4.4042	7.969	-6.1528	7.8633	3.995	4.6471

Adapted from [1].

Example 2D problem

- Example converged after only 3 gen's
- $x m=9.0215, \mathrm{ym}=8.6806$, cost $=-18.53$

Figure 3.6 Plot of the minimum and mean costs as a function of generation. The algorithm converged in three generations.

References

[1] Haupt \& Haupt, Practical Genetic Algorithms, 2nd Ed., Wiley, 2004.

