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Abstract

A fleet of tugs along the northern Norwegian coast must be
dynamically positioned to minimise the risk of oil tanker drifting
accidents. We have previously presented a receding horizon genetic
algorithm (RHGA) for solving this tug fleet optimisation (TFO)
problem. Here, we first present an overview of the TFO problem,
the basics of the RHGA, and a set of potential cost functions with
which the RHGA can be configured. The set of these RHGA
configurations are effectively equivalent to a set of different TFO
algorithms that each can be used for dynamic tug fleet positioning.
In order to compare the merit of TFO algorithms that solve the
TFO problem as defined here, we propose two evaluation heuristics
and test them by means of a computational simulation study.
Finally, we discuss our results and directions forward.
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Ship traffic along the northern Norwegian coast

Thousands of ships pass each year
2013: 186 drifting vessels, 29
groundings, 36 pollution incidents,
10 fires, 7 shipwrecks [1]
Oil tankers high environmental risk
Steering or propulsion failures →
drift → grounding → oil spill

How to reduce the risk of drift grounding accidents?
Answer: Laws, regulations, tax, incentives, attitude campaigns,

improved ship design, better nautical education, . . .
. . . and an actively patrolling tug fleet!
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Norwegian Coastal Administration (NCA)
Administration of Vessel Traffic Service (VTS) centres, tug fleet, and much more

VTS centres monitor all ship traffic in Norway
Use sensory data fusion and integration technology, e.g.,

Automatic Identification System (AIS)
ship databases
electronic maps
present and predicted weather and ocean conditions

VTS Vardø responsible for northern Norwegian region
commands a fleet of 3 patrolling tug vessels

How to position tugs such that risk is minimised?
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Vardø (NOR) VTS and region of interest

Solid —: geographical baseline
Stapled - - -: border of Norwegian territorial waters (NWS)
Pink - - -: corridor for Traffic Separation Scheme (TSS)
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The tug fleet optimisation (TFO) problem
1D problem description where tankers and tugs move along parallel lines

Example scenario: 3 oil tankers
(white) and 2 patrol tugs (black)
Tankers may begin drift at some
time from now into future
Drift trajectories will intersect
patrol line at crosspoints
Fast drift times: 8–12 hours
(typically much slower)

. . . but drift detection delay can
be significant!

Where should tugs move to optimise some desired criterion?
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A method for solving the TFO problem
A combination of optimisation, an intelligent algorithm, and modern control theory

1 Design cost function based on current and predicted data
Data can be positions and speeds of tugs and tankers, drift
trajectories, crosspoints, ocean currents, fuel, time, etc.
Cost must be a function of future tug positions s.t.
minimisation finds optimal tug trajectories
How to define the cost function?

2 Calculate future tug positions that minimise cost function
Genetic algorithm (GA): Fast, (sub)optimal solution
Mixed integer programming (MIP): Slow, optimal solution

3 Use receding horizon control (RHC) for closed-loop control
Feedback ensures adaptation to dynamic and uncertain
environment
Plan for duration Th into future (how far?)
Execute only first step of plan
Repeat and update plan
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Earlier work and cost function design
Receding horizon algorithms using GA or MIP for minimisation of cost function

Earlier work and absolute distance metric [2, 3, 4]:
cost is sum of the distances between all crosspoints and the
nearest patrol point (position of tug) for all times from start of
drift at time td and for a prediction horizon Th ahead
equivalent to minimum rescue time if all tugs same max speed

Recent work suggests other metrics [5]:
square of distances (penalise large distances more)
safe zone r (no cost inside)
detection delay δ and drift-from-alarm (DFA) time
number of unsalvageable tankers
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Illustration of original cost function
Cost is accumulated for each crosspoint
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A flaw in the original cost function
Ignores drift alarm delay and assumes tugs continue executing plan despite alarm

Inevitable detection delay δ from drift start at td until drift
alarm at ta (δ = ta − td = 3 hours, say)
Define drift-from-alarm (DFA) time ∆̂a as drift time from
tugs receive alarm at ta until crosspoint ⇒ should replace
entire drift time with shorter ∆̂a for planning
Original cost function assumes tugs continue original plan
after alarm ⇒ instead tugs should abandon plan and intercept
drifting tanker
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Illustration of DFA time and modified cost function
Rectification of flaw in original work
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Cost functions in this study
Three cost functions f1, f2, and f3 with parameters e and r

f1(t) =
td+Th∑
t=td

∑
o∈O

max
{
0,min

p∈P

∣∣y c
t − yp

t
∣∣e − r

}
(1)

f2(t) =
ta+Th∑
t=ta

∑
o∈O

max
{
0,min

p∈P

∣∣∣y c
t+∆̂a

− yp
t

∣∣∣e − r
}

(2)

f3(t) =
ta+Th∑
t=ta

∑
o∈O

g
(
min
p∈P

∣∣∣y c
t+∆̂a

− yp
t

∣∣∣− r
)

where (3)

g(x) =
{
1, x > 0 (outside r)
0, x ≤ 0 (inside r)

(4)
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Cost function configurations and static strategy

Cost function configurations:
particular choices of e and r in f1, f2, f3
e ∈ {1, 2} and r ∈ {0, 50, 100} km yields 14 configurations

Static strategy:
add static “cost function” f0
tugs stationary at base stations uniformly spread out
cheaper than actively patrolling coast

Exact cost function optimisation such as MIP is slow ⇒ use
RHGA implemented with each cost function configuration
RHGA + configuration ≡ unique TFO algorithm
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Table of RHGA configurations
Cost function fi Power e Safe region r #

0 0 0 1

1

1
0 2
50 3
100 4

2
0 5
50 6
100 7

2

1
0 8

1 50 9
100 10

2
0 11
50 12
100 13

3 0 50 14
100 15
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Evaluation and comparison of TFO algorithms

Different cost functions are generally not directly comparable
Cost functions may not reflect the “real” cost of the solution
Many stochastic elements without known probability models
Incorporation of these elements may cause too high complexity
TFO algorithms generate tug fleet control solutions
TFO algorithms may not use even use cost functions

How can we evaluate and compare the performance of different
TFO algorithms?
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Simulation framework

Use Monte Carlo simulations
Employ 2 pseudo-random algorithms:

1 Generate problem to be solved by TFO algorithm
2 Generate event (drifting tanker) where solution is tested

TFO algorithms can plan solutions (tanker movements) based
on a priori knowledge, e.g.,

Tanker positions, speeds, directions
Tug positions
Weather and ocean conditions now and in the future
Geographical concerns

TFO algorithms don’t know in advance which events will occur
Evaluation heuristics can evaluate the cost of a particular
TFO solution (tug trajectories) when some event occurs
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Simulation model

RHGA

PRNG

Event

PRNG

Cost
Function

Evaluation
Heuristic

Problem
Solution Outcome Result
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Steps of evaluation method

1 Randomly generate a deterministic and reproducible
simulation scenario

2 Run the RHGA (or another TFO algorithm) for a given
number of planning steps

3 Considering each oil tanker separately, assume each tanker
begins drifting and count the number of salvageable tankers

4 For the same simulation scenario, repeat (2) and (3) with a
different cost function configuration in the RHGA (or a
different TFO algorithm)

5 Repeat steps (1)–(4) for a number of different simulation
scenarios and find the accumulated evaluation cost for each
RHGA configuration (or TFO algorithm)
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Simulation scenarios

Choose time period of interest, e.g., 24 hours
Randomly generate oil tanker movements with corresponding
drift trajectories and cross points
Randomly create large number of scenarios offline
Use scenarios as input data for testing TFO algorithms
Testing must use some well-designed evaluation heuristic
In future real-world application, use actual oil tanker
movements and predicted drift trajectories and cross points, in
real-time (prediction requires models of movement and drift)
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Evaluation heuristic h1
Similar to f3 counting unsalvageable tankers
Assume each patrol tug p can save any ship with cross points
inside safe region r = vp

max∆̂a, where
∆̂a is the DFA time
vp

max is the pth tug’s maximum speed
Safe region r is the maximal reach of a tug upon a drift alarm

h1(ta) =
∑
o∈O

g
(
min
p∈P

∣∣∣y c
ta+∆̂a

− yp
ta

∣∣∣− r
)

(5)

r = vp
max∆̂a (6)

g(x) =
{
1, x > 0 (outside r)
0, x ≤ 0 (inside r)

(7)
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Evaluation heuristic h2

Max tug speed may vary significantly depending on weather
Hookup time not take into account in h1
Suggested changes:

Reduce safe region to area reachable for any tug with some
minimum speed vp

min
Assume tugs always able to attain this speed in any weather
Squaring to punish larger distances more

h2(ta) =
∑
o∈O

(
max

{
0,min

p∈P

∣∣∣y c
ta+∆̂a

− yp
ta

∣∣∣− r
})2

(8)

r = vp
min∆̂a, (9)
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Other possible evaluation measures

Some examples of possible evaluation measures for cost functions
(may also be weighted and combined):

Total fuel consumption
Continuous probabilities of not saving drifting tankers
Estimated probabilistic financial cost of grounding accidents
Various time measures, e.g.,

time to reach drifting tankers
time left before tankers will ground
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Simulation parameters, settings, and units

Parameters Settings Units

Patrol zone (south-north line) Y = [−750, 750] km
Tanker zone (south-north line) Z = [−750, 750] km

Number of oil tankers No = 6 -
Set of oil tankers O = {1, 2 . . . ,No} -
Number of tugs Np = {1, . . . , 6} -

Set of tugs P = {1, 2 . . . ,Np} -
Initial tug positions (base stations) Uniformly distributed km

Random initial tanker positions yo ∈ Z , ∀o ∈ O km
Maximum speed of tugs vpmax = 20, ∀p ∈ P km/h
Minimum speed of tugs vpmin = 5, ∀p ∈ P km/h

Random speed of oil tankers vo ∈ [20, 30], ∀o ∈ O km/h
Initial simulation time ti = 0 h

Simulation step ts = 1 h
Final simulation time tf = 24 h

Prediction horizon Th = 24 h
Time of start of drift td ∈ {ti, ti + 1, . . . , tf} h
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Simulation parameters, settings, and units (cont’d)

Parameters Settings Units

Detection delay δ = 3 h
Alarm time ta = td + δ ∈ {ti + δ, ti + δ + 1, . . . , tf + δ} h

Drift direction Eastbound -
Estimated drift times ∆̂ ∈ {8, 9, . . . , 12} h

Drift-from-alarm (DFA) times ∆̂a = ∆̂− δ ∈ {5, 6, . . . , 9} h
Static strategy ypt = ypti , ∀t km
Cost functions F = {f1, f2, f3} -
Distance power e = {1, 2}, in f1, f2 -

Safe region r =


{0, 50, 100}, in f1, f2
{50, 100}, in f3
vpmax∆̂a = [100, 180], in h1
vpmin∆̂a = [25, 45], in h2

km

TFO algorithms Configurations of RHGA(fi , e, r,Np) -
Number of RHGA(fi , e, r,Np) configurations Nconf = 15 -

Number of scenarios Nsc = 1600 -
Total number of simulations Nsim = Nconf × Nsc × dimNp = 144, 000 -
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Obtaining the results
Randomly generated set of 1600 unique simulation scenarios
Tested performance of 15 RHGA configurations for
Np = {1, . . . , 6} tugs on the same set of scenarios
Calculated h1 and h2 at end of each simulation
Grand total of 140,000 simulations
Found statistics for each configuration and number of tugs:

sample mean h̄1
standard deviation
coefficient of variance (relative standard deviation)
standard error (standard deviation of the sample mean)
relative standard error

Focus on sample mean of active schemes and compare with
static strategy as a low performance benchmark
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Results of h1
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Selected results from h1 evaluation

h1 is a measure of number of unsalvageable tankers
Size of tug fleet strongly affects h1
RHGA configured with f1–f3 outperforms static strategy
Except for using a single tug, the best f2 and f3 configurations
outperform the static strategy with one less tug in fleet
Best cost functions (smallest min/max) for number of tugs:

1 tug: f3
2 tugs: f2 and f3
3–6 tugs: f2

f1 similar to f2 but consistently worse for all tug fleet sizes
Very small standard error (0.005 to 0.032)
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Observations when h̄1 normalised by static strategy

Best settings for e and r for f1 and f2
e = 1 for 1–3 tugs
e = 2 for 4–6 tugs
r = 50 km is best overall

Best settings for r for f3
r = 50 km performs badly
r = 100 km performs well
difference is particulary big with many tugs in fleet

Only f2 (all configurations) and f3(r = 100) improves
monotonically vs static strategy with increasing number of
tugs
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Results of h2
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Selected results from h2 evaluation

h2 is a measure of the sum of squared distances to cross
points of unsalvageable tankers
Use log scale due to orders of magnitude difference due to
squaring
Size of tug fleet strongly affects h2
Results similar to those of h1 . . .
. . . except f3 performs worse with 1–4 tugs
Very small standard error (typically about 1% of mean)
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Observations when h̄2 normalised by static strategy

Best settings for e and r for f1 and f2 was e = 2 for any
number of tugs if r = 0 or r = 100
Best settings for r for f3

r = 50 km best for 1–2 tugs
r = 100 km best for 3–6 tugs

Only f2 (all configurations except e = 1, r = 100) improves
monotonically vs static strategy with increasing number of
tugs
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Conclusions
Both evaluation heuristics are able to quantify the
performance of TFO algorithms designed to solve the TFO
problem as defined here
Small standard error means that the uncertainty in the means
of h1 and h2 is small
Static strategy more viable with increasing number of tugs . . .
. . . yet f2 increases its performance relative to the static
strategy with number of tugs
NCA not likely to use more than 2–3 tugs ⇒ RHGA
configured with f2, r = 50, e = 1 (for h1) or e = 2 (for h2) is
best choice
f1 should not be used (probably due to previously identified
flaw)
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Current and future work
Test and verify RHGA in real-world systems with realistic
conditions:

historical data of oil tanker traffic
realistic estimates of variable maximum tug speeds attainable
under various conditions
realistic modelling of drift trajectories and cross points
downtime of tugs due to secondary missions or change of crew

2D modelling and fleet control
Probabilistic modelling
Real traffic and weather data (historic and real-time)
Develop software prototype for NCA operators
PhD project using MIP and examining these issues is well on
its way with journal paper soon to be submitted [6]
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