
Workshop GA1

Introduction to the genetic algorithm

Functional Programming and Intelligent Algorithms
Module: Genetic Algorithms

Spring 2017
Department of ICT and Natural Sciences

Norwegian University of Science and Technology

Robin T. Bye∗

Last updated: 22 March 2017

∗email: robin.t.bye@ntnu.no; website: www.robinbye.com; phone: 70 16 15 49; room: B315.

mailto:robin.t.bye@ntnu.no
http://www.robinbye.com/

Functional Programming and Intelligent Algorithms Spring 2017 Module: Genetic Algorithms

Contents
1 Workshop overview 2

1.1 Topics . 2
1.2 Reading material . 2
1.3 Specific learning outcomes . 3
1.4 Schedule . 3

2 Exercises 4
2.1 Introduction to AI and optimisation . 4
2.2 Minimum-seeking algorithms . 5
2.3 Nature-inspired algorithms . 6
2.4 Introduction to the GA . 7

3 Homework 7

1 Workshop overview

1.1 Topics

Today’s topics include:

• introduction to artificial intelligence (AI)

• introduction to optimisation

• minimum-seeking algorithms

• nature-inspired algorithms

• introduction to the genetic algorithm (GA)

1.2 Reading material

Compulsory reading to be studied before this workshop is Chapter 1 in Haupt & Haupt (2004)
and Chapters 9–10 in Marsland (2015).

Supplementary reading include Chapter 9.5 in Negnevitsky (2005), Chapter 1 in Goldberg (1989),
and Chapters 1–2 in Russell & Norvig (2010).

© 2017 Robin T. Bye www.robinbye.com 2 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2017 Module: Genetic Algorithms

1.3 Specific learning outcomes

After completing this workshop, including self-study, reading and exercises, the students should
be able to

• provide a proper definition of artificial intelligence (AI) and list several topics and tools in
AI.

• explain what is meant by optimisation both in general terms and from a systems point of view
(inputs → system → output) and provide examples of absolute and relative optimisation.

• find exact global optima of simple analytical functions such as the parabola using calculus
(analytical methods such as finding derivatives) and plot the same functions.

• write small Haskell programmes able to implement mathematical functions as well as simple
minimum-seeking algorithms for optimising such functions.

• categorise problems as solvable analytically or not and give examples of methods that may
be used in each case.

• explain and exemplify common terminology and methodology from the field of optimisation
and computational intelligence.

• recognise the problem of getting stuck in local optima and suggest methods for avoiding this
problem.

• list examples of a few nature-inspired optimisation algorithms and explain some fundamental
mechanisms such as natural selection.

• demonstrate knowledge about the history of the GA and explain its basic principles.

• list a number of advantages of the GA and explain why they are advantages.

• define a variety of selection methods and parameters such as mutation rate and selection
rate.

1.4 Schedule

We begin with an overview of the remaining weeks of the course dedicated to this module on genetic
algorithms (GAs), before we proceed with a lecture that gives an introduction to prerequisite topics
of GA, namely, artificial intelligence (AI) and optimisation. Then we proceed with some exercises,
before a lecture that gives an introduction to nature-inspired algorithms and the GA. Finally, we
do some more exercises.

The workshop will roughly follow the schedule below:

09.15 Module overview and status update.

09.45 Lecture: Introduction to AI and optimisation.

© 2017 Robin T. Bye www.robinbye.com 3 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2017 Module: Genetic Algorithms

11.15 Lunch.

12.00 Exercises.

13.15 Lecture: Introduction to the GA.

14.15 Exercises.

2 Exercises

2.1 Introduction to AI and optimisation

Exercise 2.1: Explain what is meant by AI.

Exercise 2.2: Do a literature search and find a real-world problem that has been solved using AI
techniques. Write a half- to one-page summary of the problem justifying why the solution belongs
to the field of AI.

Exercise 2.3: Explain what is meant by optimisation.

Exercise 2.4: Consider optimisation of the functions

f1 = |x|+ cosx, −∞ ≤ x ≤ ∞ (2.1)
f6 = (x2 + x) cosx −10 ≤ x ≤ 10 (2.2)
f7 = x sin 4x+ 1.1y sin 2y, 0 ≤ x, y ≤ 10 (2.3)

For each function, is the optimisation problem

(a) constrained or unconstrained?

(b) single-variable or multivariable? Give the number of dimensions of the problem.

(c) static or dynamic?

(d) discrete or continuous?

(e) solvable analytically (using calculus and derivative methods)?

Provide explanations to all your answers.

Exercise 2.5: Two functions are given by

g(z) = −(z + 3)2 (2.4)
h(y) = (y + 1)2 − 2 (2.5)

(2.6)

For each function, answer the following:

© 2017 Robin T. Bye www.robinbye.com 4 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2017 Module: Genetic Algorithms

(a) Explain why the function can be optimised analytically.

(b) Use calculus to find the optimum (ignore values at infinity) and determine if it is a maximum
or a minimum.

(c) Draw a diagram by hand and indicate the optimum.

Exercise 2.6: Consider the function f2 given by

f2 = |x|+ sinx −20 ≤ x ≤ 20 (2.7)

Implement the function f2 and the other functions f1, f6, and f7 defined previously as Haskell
functions. Test your functions in the interpreter.

2.2 Minimum-seeking algorithms

Exercise 2.7: You have written a computer program that finds the minimum of a given cost
function. One day you are asked to write another computer program that finds the maximum
a given fitness function. How can you easily modify your initial program to maximise a fitness
function instead of minimising a cost function? Give an example of a cost function and convert it
to a fitness function.

Exercise 2.8: Investigate the Nelder-Mead local minimisation algorithm by performing a search
on the Internet. Is the algorithm able to find a global minimum in each case (within the given
constraints)? How does the choice of initial guess affect your results?

Exercise 2.9: Write your own simple version of a local minimiser as a function fminsimple
that given a single-variable cost function costfunction starts at an initial guess x0 in the search
space and moves in fixed moves with an increment of stepsize in a downhill direction until it
cannot move downwards anymore. You should also include lower and upper boundaries, l and u,
respectively.

The minimiser should return the found input variable value, xmin, and the minimum function
value evaluated at xmin, namely costfunction xmin, for example in a tuple.

A possible function signature is given by

fminsimple : : (Double −> Double) −− c o s t f un c t i on
−> Double −− x0
−> Double −− s t e p s i z e
−> Double −− lower boundary l
−> Double −− upper boundary u
−> (Double , −− xmin (optimal va lue o f x)

Double) −− c o s t f un c t i on xmin (minimum cos t)
fminsimple costfunction x0 stepsize l u = −− <. . . your code here . . . >

© 2017 Robin T. Bye www.robinbye.com 5 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2017 Module: Genetic Algorithms

Test your local minimiser function on some one-dimensional cost functions such as those presented
above, which can be found with plots and solutions in Appendix I of Haupt & Haupt (2004).
Observe when the minimiser succeeds and when it fails in finding the global minimum.

Exercise 2.10: Expand your function to also display the number of iterations to complete the
search for a minimum. A possible function signature is given by

fminsimple ' : : (Double −> Double) −− c o s t f un c t i on
−> Double −− x0
−> Double −− s t e p s i z e
−> Double −− lower boundary l
−> Double −− upper boundary u
−> Int −− counter
−> (Double , −− xmin

Double , −− c o s t f un c t i on xmin
Int) −− counter + 1

fminsimple ' costfunction x0 stepsize l u c = −− <. . . your code here . . . >

How does choice of initial guess x0 and the stepsize affect the number of iterations?

Exercise 2.11: Both the Nelder-Mead algorithm and your homemade function fminsimple can
get stuck in local minima. Suggest how you could make your algorithm above more sophisticated
so that there is a greater chance of finding a global minimum.

2.3 Nature-inspired algorithms

Exercise 2.12: List five nature-inspired optimisation algorithms. Do a search and find at least
one real-world problem that has been solved for each of the five algorithms.

Exercise 2.13: What are the two components of natural selection?

Exercise 2.14: Provide short explanations of gene, chromosome, and DNA.

Exercise 2.15: List four steps of simulating natural evolution.

© 2017 Robin T. Bye www.robinbye.com 6 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2017 Module: Genetic Algorithms

2.4 Introduction to the GA

Exercise 2.16: Who is usually mentioned as the founding father of the GA and who popularised
it?

Exercise 2.17: What does encoding in a GA mean?

Exercise 2.18: List five advantages of using a GA and explain why they are advantages.

Exercise 2.19: List the steps of a basic GA. You may draw a diagram if you prefer.

Exercise 2.20: Explain the following genetic operators and use diagrams to aid your explana-
tion:

(a) Crossover.

(b) Mutation.

Exercise 2.21: Explain the following selection methods:

(a) Single-point crossover.

(b) Two-point crossover.

(c) Uniform crossover.

(d) Tournament selection.

(e) Truncation selection.

(f) Roulette wheel selection.

3 Homework

• Complete all the exercises above.

• Read through (again!) the specific learning outcomes in Section 1.3 to check which outcomes
you have not attained yet. Study today’s material and prepare questions for tomorrow about
learning outcomes you have missed.

• Skim through the lecture notes for tomorrow’s lecture and the suggested literature.

References
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning .
Addison Wesley Longman, Inc.

Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithms . Wiley, 2nd ed.

© 2017 Robin T. Bye www.robinbye.com 7 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Functional Programming and Intelligent Algorithms Spring 2017 Module: Genetic Algorithms

Marsland, S. (2015). Machine learning: an algorithmic perspective. CRC press, 2nd ed.

Negnevitsky, M. (2005). Artificial Intelligence: A Guide to Intelligent Systems . Addison-Wesley,
2nd ed.

Russell, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Pearson, 3rd ed.

© 2017 Robin T. Bye www.robinbye.com 8 Available under the Creative Commons BY-NC-SA 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Workshop overview
	Topics
	Reading material
	Specific learning outcomes
	Schedule

	Exercises
	Introduction to AI and optimisation
	Minimum-seeking algorithms
	Nature-inspired algorithms
	Introduction to the GA

	Homework

