Week 1: Getting started with Haskell

Hans Georg Schaathun

25th April 2017

‘ Time \ Topic \ Reading

8.15- |Introductory Lecture (Thompson Chapter 1-3
9.00- | Install software

Tutorial 1: Getting Started
11.45- | Lunch break

12.15- | Recap/discussion of Tutorial 1
Lecture: [Recursion and problem solving| | Thompson Chapter 4, 10.2)
13.00- | Tutorial 2—4: Using functions
If time, continue on Tutorial 5

We will focus on Tutorials 1-4 in class. You should aim to complete all five tutorials by next
Friday, especially if you find it challenging.

This PDF document is available in an HTML version at http://www.hg.schaathun.
net /FPIA/week01l.html.

1 Software Installation

We will be programming in Haskell for this module. Hence you will need to install the Haskell
platform one way or another.

All our examples and instructions will assume that you use some kind of standard Unix system,
typically linux. We know that many students use more obscure operating systems, and we will
try to help. However, it is your own responsibility to make it work if you use non-standard
systems.

We have prepared a virtual machine image which you may try if you want to try out linux
on a non-linux system. In our experience though, most students find it easier to install the
Haskell-platform on their system, and live with quirks, than to install a virtualbox and the virtual
machine. It is your choice.

http://www.hg.schaathun.net/FPIA/week01.html
http://www.hg.schaathun.net/FPIA/week01.html

1.1 Install the Haskell Platform

You can download and install the Haskell platform from https://www.haskell.org/
platform/. Many linux distros also have it available in the standard repos. For instance, in
Debian you can do

apt—get install haskell—platform

You will probably have to install a number of cabal packages. For instance we need easyplot
later today. You can install it using the following command:

cabal install easyplot

Other packages can be installed as the need arises. Which packages you need may depend on
your OS and how you install the Haskell platform.

You will also need a text editor to edit source code. Windows Notepad is a bad choice because
it does not understand unix-style linebreaks. Most other editors should work well, even on files
imported from other operating systems. Popular examples include gedit, vim, and emacs.

Easyplot depends on gnuplot which has to be installed as a standalone problem. On Debi-
an/Ubuntu this is straight forward:

apt—get install gnuplot

On recent releases on Mac OS you may have to instal an X server, such as XQuartz, to make
gnuplot work.

1.2 Install Virtualbox
You need to download and install virtualbox fromhttps://www.virtualbox.org/wikil/
Downloads), following the official instructions for you OS.

When you have virtualbox, you can download and add the VM for the module.

1. Download the VM from http://www.hg.schaathun.net/FPIA/fpiavm.zip
2. Unzip the archive and put in a suitable place.

3. Start virtualbox.

4. Import the fpia VM (Machine — Add)

5. Start the VM

6. Log in using

e Username: fpia

¢ Password: NeuralNetwork

https://www.haskell.org/platform/
https://www.haskell.org/platform/
http://www.gnuplot.info/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
http://www.hg.schaathun.net/FPIA/fpiavm.zip

2 Tutorial 1: Getting Started

2.1 Step 1: Getting started

First of all, we need to get to grips with the Haskell interpreter, that is
GHCi.

Do the following.

1. Open a terminal window
2. Start ghci on the command line

3. Use GHCi to calculate the following expressions:

12 = 412 — 15
12 % (412 — 15)
1/ (2=pi)

cos pi

2R

2+%0.5

Do you get the results you expect?

4. Use GHCi to calculate the following expressions:

743763 =
3.(12+9) =

11'0 =
COS T
o7 =
32 mod 19 =
0.4* =

Do you get the results you expect?

5. ghci has a number of interpreter commands which are not part
of the Haskell language. Such commands start with a :. Have a
look at the list of available commands by typing

:help

You will see some of the listed commands in use later.

6. Exit ghci. You can use either Ctrl-D or the : quit command to
exit.

€]
2
3
“
&)
(6)

http://www.hg.schaathun.net/FPIA/video2015/01start.mp4

AN N AW~

2.2 Step 2: Using a script

Although ghci makes a neat calculator out of the box, that’s not quite what we want in this
module. To solve complex problems we need to write our own programs, that is, define our own
functions. To do this, we use separate text files, called scripts or modules, such as the following
FirstScript.hs file.

— (C) 2016: Hans Georg Schaathun <hasc@ntnu.no>

module FirstScript where — Module header
double :: Integer —> Integer — Function declaration (type)
double x = 2xx —— Function definition

The first line, and other text following a double dash (—-), are comment which is ignored by
GHC/GHCi. The module header (Line 3) gives the module name which has to match the file
name. The function declaration (Line 5) gives the type of a new function. The double func-
tion takes an integer as input and gives an integer as output. Mathematically, we would write
double : Z — Z. The last line defines the double function. The return value is two times the
input value x.

Do the following:

1. Make a new directory to keep your notes and files for this first tutorial. E.g.

mkdir WeekO1

2. Change into the new directory. E.g.
cd WeekOl1

3. Download the file FirstScript.hs| file and put it in the current directory (Week01).
4. Check the contents of the new file by opening it in your editor, e.g.

gedit FirstScript.hs

5. Start ghci from the command line
6. Load the script using the : 1oad command:

:load FirstScript

Note that the extension . hs may be omitted.

7. Test the function by typing
double 5

8. Try the following

http://www.hg.schaathun.net/FPIA/FirstScript.hs
http://www.hg.schaathun.net/FPIA/FirstScript.hs

double 2.5

What happens? Remember the function declaration. What input does double accept?

2.3 Step 3: Making a script

Now, you are going to make your own simple script/module from
scratch.

1. Make sure that you are in the Week01 directory which you
used in the previous step. You can do this with the following
command which prints the absolute path to the current direct-
ory:

pwd

2. Open an editor to edit a Haskell file. E.g.
gedit MyFirstScript.hs
The name of a Haskell file (script) have to end with .hs and
should start with an upper-case letter. E.g. MyFirstScript.hs.

3. Start with a comment at the top of your file to claim authorship,
e.g.
—— John Doe <john@doe.nowhere. invalid >
Comments are ignored by the compiler or interpreter, and are

purely a help for human readers.

4. Define a new module by adding a module header under the com-
ment

module MyFirstScript where

Note that the module name must match the filename without the
.hs extension.

5. Define your first function inside the

greet :: String —> String

greet name = "Hello, " ++ name
6. Save the file
7. Start ghci from the command line

8. Load your script, e.g.

http://www.hg.schaathun.net/FPIA/video2015/04script.mp4

10.

11.

12.

:1 MyFirstScript

: 1 is shorthand for : 1oad.

Test the function

greet "John"

You can add more functions to your module. Do not close ghci.
Use a different window to add a new function to your module.
square :: Int —> Int

square n = nx*n

Returning to ghci, reload the module using

:reload

Test the new function:

square 2
square 5

2.4 Step 4: Working with Integers

One of the fundamental data types is integers. In fact Haskell has two
integer types, namely Int and Integer. We shall make a little experi-

ment to see the difference.

1.
2.

Open your text editor with a new file, IntTest.hs is a good name.

Define a function to do exponentiation of Integer.

powl :: Integer —> Integer —> Integer
powl x y = x"y

. Define another function to do exponentiation of Int.

pow2 :: Int —> Int —> Int
pow2 x y = x’y

Open ghci and load the module you just created.

. Test the two functions, with small and big arguments.

powl 2 10
pow2 2 10
powl 2 65
pow2 2 65

http://www.hg.schaathun.net/FPIA/video2015/05int.mp4

powl 3 39
pow2 3 39

What happens? Why do pow1 and pow?2 give different answers? Dis-
cuss answers with your class mates.

2.5 Step 5: Working with Booleans

Boolean is another fundamental data type, with two possible values, True or False.

1. Open your editor to create a new Haskell module, e.g. BoolTest.hs
2. Add the customary comment to identify yourself as author and the module header.

3. Add a couple of functions:

myNot :: Bool —> Bool
myNot False = True
myNot True = False

myAnd :: Bool —> Bool —> Bool
myAnd True True = True
myAnd _ _ = False

Both functions are standard logical operators, the negation (not) and the conjunciton (and).

4. Start ghci, load your module, and test the above functions, e.g.

myNot False
myNot True

myAnd False False
myAnd False True
myAnd True False
myAnd True True

Are you happy with the results?

5. Add functions for logical or (myOr) and exclusive or (myXOR) to your module using
pattern matching and literals. There is more than one way of doing it, so just think about
the mathematical (logical) meaning and do it your way.

6. Reload your module and test the new functions. Do they work as intended?

2.6 Step 6: Working with Floating Point Numbers

Many of our algorithms work on real numbers. Unfortunately, the computer does not support
real numbers. Instead we have to work with floating point numbers. There are two floating point

data types in common use. In Haskell, they are called Float and Double, but they are defined by
the CPU architecture and not by the language. Let’s explore this

1. Why cannot computers work with real numbers?
2. Start ghci

3. Compare the following expressions

2+%%x500 :: Double
2%%x500 :: Float
2%x%(—500) :: Double
2%%(—500) :: Float

The floating point types permit a couple of non-numeric values, namely +Infinity, and NaN (Not
a Number).

4. Evaluate each of the following Haskell expressions using GHCi. What value do you
expect to get? What value do you actually get?

1/0

0/0

isNaN (log (—1))

(log (—1)) == (log (1))
(1/0)*0

isInfinite (0/0)
isInfinite (1/0)

NaN values will usually just propagate through floating point operations, so that NaN in gives
NaN out. However, some operations have unpredictable results, so you should check for NaN
whenever there is a risk that NaN has occured.

5. What value do you get from the following expressions:

ceiling (log (—1))
ceiling (0/0)
floor (0/0)

2.7 Step 7: Prefix and in-fix notation

We have seen a couple of functions. For instance:

cos 1
powl 2 10
pow2 2 10

http://www.hg.schaathun.net/FPIA/video2015/07infix.mp4

They are evaluated by writing the function name first, and then a string
of arguments. This is called prefix notation, since the function name
prefixes the arguments.

We have also seen a couple of operators. For instance

2 +
3 %
6 /

2
5
2

They are evaluated by writing the operator symbol between two oper-

ands.

1.

This is called in-fix notation.

Try the following expressions in GHCi and compare:

2 + 2
(+) 2 2

Try the following expressions and compare:

3 % 5
(%) 35

. Try the following expressions and compare:

6 /2
(/) 62

Make sure that you have loaded the module defining pow1 and
pow2. Try the following expressions and compare:

powl 6 2
6 ‘powl‘ 2

. Try the following expressions and compare:

pow2 2 3
2 ‘powl‘ 3

. Try the following expressions and compare:

32 ‘mod‘ 10
mod 32 10

. Try the following expressions and compare:

32 “div © 10
div 32 10

. Discuss What is the difference between an operator and a func-

tion?

800

600

400

200

Figure 1: Plot of f(z) = 222 — 4x.

3 Tutorial 2: Studying functions in Haskell

3.1 Worked example

We can use Haskell to study the behaviour of mathematical functions. The function f(x) is
defined as

f(z) = 222 — 4z
and plotted in Figure

1. To study the function, we need to define it as a function. Create a module in a file
NumTutorial.hs, with the following definition

module NumTutorial where

f :: Double —> Double
f X = 2#x%%2 — 4xx

2. In this exercise, we will use the easyplot library. We install it with the following com-
mands before we start GHCi.
cabal update
cabal install easyplot

3. easyplot depends on gnuplot, which you also have to install. If you run Debian/Ubuntu,
try the following.

apt—get install gnuplot

Otherwise please google for installation instructions for your OS.

10

4

6

10.

. Open GHCi
ghci

. Load the module

:1 NumTutorial

. Test the function £
f 0
f 1
f (=1)

Do the results look reasonable?
. We import the EasyPlot library so that we can use it

import Graphics.EasyPlot

You will see that the prompt changes, to indicate loaded modules.

. The following command plots the function f.

plot X11 (Function2D [] [] f)

The second argument to plot is a data set. The Function2D function creates such a
data set from a function.

Note If you run Windows you need to replace X11 with Windows (unless you have an
X server running). There is a similar Aqua option for Mac OS, but Mac ofthen has an X
server as well.

If the plot window closes before you manage to see it, try the following variant instead
(Windows):

plot’ [Interactive] Windows (Function2D [] [] f)

The two empty brackets in the arguments for Funct ion2D are lists of options. We can
add a title and restrict the range, as follows:

:set +m

plot X11 (Function2D
[Title "The f function"]
[Range (—20) (20)] f)

The : set +m command is necessary to allow one statement to span multiple lines. The
plot statement has been split over three lines just to make it easier to read.

The X11 argument to plot says that the plot be shown in an X11 window. It is possible
to plot to file, as follows:

11

150000

100000

50000

=50000

—100000
-10

Figure 2: Plot of g(z) = 2% + 2% - 2+ 2% - 4 + x — 10.

iset +m

plot (PDF "fplot.pdf") (Function2D
[Title "The f function"]
[Range (—20) (20)] f)

11. Leave GHCi (use the : g command).
12. Open the PDF plot, using
okular fplot.pdf &

If you want to learn more about EasyPlot, you find documentation on Hackage.

3.2 Practice Problem

Let’s study a second function g(z). A plot is shown in Figure |2} and the definition is
gx)=a"+2* 2422 4+ 2-10

Please implement and plot this function in Haskell, as follows:

1. Add a definition for a function g in the file NumTutorial.hs.

2. Open GHCi and load NumTutorial.

3. Evaluate g(0), g(1), and g(—1) to test the function g. Do the results look reasonable?
4. Import Graphics.EasyPlot
5

. Plot the function g on the range —10 > = > 10 in a window. Give the curve a meaningful
title.

6. Plot the g function to a PDF file (gplot .pdf).

12

https://hackage.haskell.org/package/easyplot-1.0

7.

Leave GHCi (use the : g command) and open the PDF plot in okular (or another PDF
viewer).

4 Tutorial 3: Recursion and Problem Solving

In this section we will continue the study of the two functions f(x) and g(z) from the previous
tutorial.

Reading: Simon Thompson, Chapter 4 and 10.2

4.1 Worked Example: Optimisation

A minimisation problem has the form

min f ()

for some function f(z). The problem is to find the smallest possible value for f(x). Often, we
also want to find the corresponding value of .

One simple minimisation algorithm is obtained by imagining a ball rolling on the curve. It will
always run down-hill, and eventually it will stop in a local minimum. We will implement this
algorithm to find the = value minimising the function f(z) from the previous tutorial.

1.
2.

Open the module from the previous tutorial, with the definition of the £ function.

We need to decide how far the ball should roll per iteration. For the time being we make
it a constant, so add the following line to you module

delta = 0.01

. Then we decide on the bounds for the search. We search for a minimum in the interval

(—20,20), and add the following lines to the module.

low = —20
high = 20

We shall implement the function £fmin which takes a starting point x as input, and returns
a (local) minimum. First we add the type declaration to our module, with one input and
one output:

fmin :: Double —> Double

. Now we can start adding definitions for fmin. Using guards, we can define one case at

the time. First of all, if the ball has reached the lower or upper bound, this bound value is
returned:

fmin x0 | x0 — delta < low = low
| xO + delta > high high

13

This constitues a base case for recursion.

6. If we find smaller function value to the left of x0, i.e. at x0—-delta, we move left and
call the function recursively with the new starting point. Similarly, we move right if this
gives a smaller function value.

fmin x0 | f (x0 — delta) < f x0
| £ (xO0 + delta) < f x0

fmin (x0 — delta)
fmin (x0 + delta)

7. If neither moving left nor right reduces the function value, we must be in a local minimum
which is then returned:

fmin x0 | otherwise = x0
8. Save your module, start GHCi, and load (or reload) the module.
9. Test the fmin function, as follows

fmin O

10. Discuss: does it matter what value you give as starting point?

4.2 Practice Problem: Bisection Method

In this tutorial we shall implement the Bisection Algorithm which is a simple numerical approach
to equation solving. Consider the following equation as an example

0=2"+2"2+2%4+2-10
Note that the right hand side is the function g(x), so we can write 0 = g(z) instead. Let’s not
discuss whether a solution can be found analytically. We want to find some solution numerically.
A couple of observations are easy to make.
1. g(—-10) <0
2. g(10) >0
3. g(x) is continuous

It follows from these three observations that g(z) has at least one root in the interval —10 < = <
10. Without considering the possibility of multiple roots, we want to find one such root.

You can look up the Bisection Method in most undergraduate introductions to calculus. Let g(x)
be a continuous function and (/,) an interval so that g(I) and g(u) have different sign; then
g(x) has a zero in the interval (I, u). The Bisection Method finds the midpoint m in the interval
(I,u). If g(1) and g(m) have different sign, then there must be a zero in the interval (I, m) and
we use bisection recursively on this interval. Otherwise, we call it recursively on the interval
(m,u).

14

4.2.1 Tasks

1. Open your editor and create a new Haskell module for this problem. Choose an appropri-
ate name for the module.

2. Implement the function g(z) described above in Haskell. The type description should be
f :: Double —> Double

3. We are going to implement a bisect function, which can be used to find a zero of £
with a call like this:
bisect (—10) 10
The arguments are resp. the lower and upper bound of the search interval and have type
Double.

* Write the type signature of bisect into your module file.

4. The bisect function has to be a recursive function, so we need two cases. Use 1 and u
to denote the bound of the search interval (1, u).

Base case If the difference 1-u is very small, we can just take the average of 1 and u
as the approximate solution. Write a guarded expression for the base case, e.g.

bisect 1 u | u—1 < eps =

choose an appropriate value for eps and add a defintion after the equal sign.

Recursive case If the search interval is larger, we split it in two, and find which half
must contain a root. Then we recursively continue the search in the relevant half.
The recursive call, with two different cases using guards, can look something like

this.
bisect 1 u | fl*fm < 0 = bisect 1 m
| otherwise = bisect m u
where

You need to complete the where clause to define the midpoint m and the function
values fm (g(m)) and £1 (g(1)).

5. Start ghci and load the module that you have written.

6. Test your bisection function by finding the root of g(z) in the interval (—10,10). Le.
evaluate the following

bisect (—10) 10

Does the answer look reasonable when you compare to the plot of g(z) in the previous
tutorial?

15

5 Tutorial 4: Higher-Order Functions

5.1 Worked example: The optimisation problem

In Tutorial 3, we implemented minimisation of a single pre-defined function f(x). It would be
obviously, be better if we could use fmin on any function h(z). Then the function h needs to
be an argument to the function.

1. First, let’s update the type decalaration, by adding a function parameter. The first argument
must have the same type as £, i.e. Double -> Double. Le. change the type declaration
to

fmin :: (Double —> Double) —> Double —> Double

2. Secondly, we need to add the parameter in the definition, and every reference to £ must
be replaced by a reference to the parameter name h, as follows:

fmin h x0 x0 — delta < low = low
x0 + delta > high = high

|
|
| h (xO — delta) < h x0 fmin h (x0 — delta)
|
|

h (x0 + delta) < h x0 fmin h (x0 + delta)
otherwise = x0

3. Save the module and reload the module it in GHCi.

4. Test the function
fmin f O

Do you get the same answer as the first time?

5.2 Practice problem: The bisection algorithm

Now you have seen how to make fmin a higher-order function. Now you do the same to the
bisect function, so that it can find zeros of arbitrary continuous functions.

1. We want to change the bisect function so that it can be used like this

bisect f (—10) 10

The first argument is the function for which we want to find a zero, with type Double
—> Double, making bisect a higher-order function. The other two arguments are as
before.

a) What is a higher-order function?

b) Change the type signature of bisect into your module file.

16

2. Update the implementation of bisect to become a higher-order function.

a) Add the function argument f as the first argument on the right hand side of the
definition?

When the symbol f is used as an argument, £ on the right hand side will refer to the
argument and not to the global definition. Thus no changes are required on the right hand
side.

3. Test the revised bisection function by finding the root of g(z) in the interval (—10, 10).
L.e. evaluate the following

bisect f (—10) 10

Is the answer the same as before?

6 Tutorial 5 (Optional): The Pictures DSL

6.1 Step 1: The Pictures Example

A major benefit of functional programming is that we often get a de-
scription which closely resembles natural or mathematical language
as we would use it in a textbook or report. Functional languages are
often used to define domain-specific languages (DSL), which support
simple and intuitive definition of problems and solutions within a spe-
cific domain. Simon Thompson gives a simple example in the Pictures
module, which gives a simple DSL for image operations.

1. Download the lsource code for the textbook. You can do this on
the commandline using:
wget https ://hackage.haskell.org/package/Craft3e —0.1.0.10/Craft3e —0.1.0.10.tar.gz
2. Unpack the tarball.
tar xzf Craft3e —0.1.0.10.tar.gz

3. Unpacking the tarball gives you a new directory with all the
source code for the textbook. Change into this directory:

cd Craft3e —0.1.0.10

4. Use the following command to see the contents of the directory.
ls

Don’t worry about all the different files. We are really only
interested in Pictures.hs.

17

http://www.hg.schaathun.net/FPIA/video2015/02pictures.mp4
https://hackage.haskell.org/package/Craft3e-0.1.0.10/Craft3e-0.1.0.10.tar.gz

5. Start ghci inside the Craft3e directory

6. Load the Pictures module

:load Pictures

Note that the . hs extension is not required.
7. Print (render) the horse image as ASCII graphics

printPicture horse

Does it look like a horse?
8. Try the standard print function too:
print horse
This shows the raw data representing the image. You see a list
of strings, each string enclosed in double quotes, and the list

enclosed in square brackets with commas to separate the ele-
ments.

‘We will use the Pictures module for several exercises later.

6.2 Step 2: Pictures with SVG rendering

The ASCII arts used above isn’t too pleasing to the eye. There is a
variation rendering SVG graphics as well, namely the PicturesSVG
module. It requires a browser on the side for the display. Test it, and
see that it works.

1. Make sure that Craft3e-0.1.0.10 is the current directory.

2. Open the file refresh.html in a web browser, e.g.
firefox refresh.html &

The ampersand (&) makes the program start in the background,
so that it does not block the command prompt.

3. Start ghci and load the PicturesSVG module. You can do this
in two steps, as with the Pictures module above, or you can do
both in a single step giving the module name as an argument to ghci:

ghci PicturesSVG

4. Render the horse picture

render horse

18

http://www.hg.schaathun.net/FPIA/video2015/03svg.mp4

5. Take each of the images which you printed in ASCII in the pre-
vious step, and render them as SVG.

6.3 Step 3: Playing with Pictures

Do Exercises 2.1-2.4 in Simon Thompson’s book.

6.4 Step 4: Designing Problems

Do Exercises 4.25-4.30 in Simon Thompson’s book.

7 Solutions

1. Tutorial 1

2. Tutorial 3—4

19

Week1/MyFirstScript.hs
Week1/Bisect.hs

	Software Installation
	Install the Haskell Platform
	Install Virtualbox

	Tutorial 1: Getting Started
	Step 1: Getting started
	Step 2: Using a script
	Step 3: Making a script
	Step 4: Working with Integers
	Step 5: Working with Booleans
	Step 6: Working with Floating Point Numbers
	Step 7: Prefix and in-fix notation

	Tutorial 2: Studying functions in Haskell
	Worked example
	Practice Problem

	Tutorial 3: Recursion and Problem Solving
	Worked Example: Optimisation
	Practice Problem: Bisection Method
	Tasks

	Tutorial 4: Higher-Order Functions
	Worked example: The optimisation problem
	Practice problem: The bisection algorithm

	Tutorial 5 (Optional): The Pictures DSL
	Step 1: The Pictures Example
	Step 2: Pictures with SVG rendering
	Step 3: Playing with Pictures
	Step 4: Designing Problems

	Solutions

