
Week 2: Lists and Tuples

Hans Georg Schaathun

25th April 2017

Time Topic Reading
8.15- Recap of tutorials last week

Lecture: Lists and tuples Thompson Chapter 5
9.00- Tutorial 6: Lists and Tuples
11.45- Lunch break
12.15- Recap/discussion of Tutorial 6

Lecture: List processing Thompson Chapter 6
13.00- Tutorial 7–8: More on Lists and Tuples

This PDF document is available in an HTML version at http://www.hg.schaathun.
net/FPIA/week02.html.

1 Tutorial 6: Lists and Tuples

Reading: Simon Thompson, Chapter 5 (skip 5.3). This exercise follows the example in
Chapter 5.7 of Simon Thompson’s book.

We are going to design a simple system to record books borrowed from a library. To do this,
we will need both tuples and lists. If you want to, you may use algebraic data types, but if you
have enough on your plate already, don’t think about algebraic data types until next week.

Primarily, we need a data structure to record loans. A loan in this context is the fact that a
given person has borrowed a particular book. Thus we also need to be able to represent books
and persons.

1.1 Getting started

You need to create a new Haskell module (file) with all the definitions in this tutorial.

1

http://www.hg.schaathun.net/FPIA/week02.html
http://www.hg.schaathun.net/FPIA/week02.html


It is useful to run ghci in a window beside your editor, and reload the file after every amend-
ment and test functions. Only reloading the file will tell you if it is syntactically correct.

1.2 Books and Persons

Books and persons may be represented in different ways in terms of data types. Think through
the following:

1. What information should be included for each book?

2. What information should be included for each person?

3. What data types are appropriate for books and persons?

1.3 The Loan Database

1. Define data types for a Person (borrower) and a book. For instance, as follows:

type Pe r s on = S t r i n g
type Book = S t r i n g

These are simple (and crude) definitions. A book is represented only by its title, and a
person by his name.

2. Define a data type Loan to represent a loan, recording the borrower (a person) and the
book borrowed. E.g.

type Loan = ( Book , Pe r so n )

3. Finally we need a data type Database which records the set of outstanding loans.
What data types can be used to represent a set in Haskell?

We can use a list, as follows:

type D a t a b a s e = [ Loan ]

1.4 Test Objects

Let’s define a couple of objects for the sake of testing.

1. Define the following constants of type Loan in your module:

a) loan1 representing the fact that "John" has borrowed "Huckleberry Finn"
I.e.

l o a n 1 = ( " H u c k l e b e r r y Finn " , " John " )

2



b) loan2 representing the fact that "John" has borrowed "Tom Sawyer"

c) loan3 representing the fact that "Jane" has borrowed "Tom Sawyer"

2. Define a database db1 containing each of the three loans loan1, loan2, and loan3.
I.e.

db1 = [ loan1 , loan2 , l o a n 3 ]

3. Check your definitions by evaluating them in ghci. I.e. loan1 db1

4. Also evaluate loan2 and loan3 to check that they are correct.

1.5 Retrieval functions

A database is nothing without functions to access it. Add the declarations and definitions to
you module file as you work through the steps below.

1. Define a function to get all the books borrowed by a particular person. We can declare
it as follows:

books : : D a t a b a s e −> P er s on −> [ Book ]

We can define the books function using list comprehension:

books db p e r s o n = [ b | ( b , p ) <− db , p == p e r s o n ]

2. Similar to the above, we define a function to return all people who have borrowed a
particular book, i.e.

b o r r o w e r s : : D a t a b a s e −> Book −> [ P e r s on ]

Write a definition for the borrowers function.

3. Test both functions in ghci:

books db1 " John "
books db1 " Jane "
b o r r o w e r s db1 " H u c k l e b e r r y Finn "
b o r r o w e r s db1 "Tom Sawyer "

4. What output do you expect? What output do you get? Compare the two.

1.6 More retrieval

The retrieval functions above return lists. Let’s look at a couple of other useful retrievel
functions.

3



The first function says whether the given book is borrowed or not. The second function gives
the number of books borrowed by the given person.

1. We want to know if a particular book has been borrowed. I.e.

borrowed : : D a t a b a s e −> Book −> Bool

We can implement this using the borrowers function, and see if the result is empty
or not, e.g.

borrowed db book = l e n g t h ( b o r r o w e r s db book ) > 0

2. We want to know how many books a given individual has borrowed. I.e.

numBorrowed : : D a t a b a s e −> P er s on −> I n t

Write a definition using the books and length functions.

3. Test both functions in ghci:

numBorrowed db1 " John "
numBorrowed db1 " Jane "
borrowed db1 " H u c k l e b e r r y Finn "
borrowed db1 "Tom Sawyer "

What output do you expect? What output do you get? Compare the two.

1.7 Modifiers

We are able to retrieve data, but we also want to update the database. Since Haskell does
not have variables, we cannot really change anything. We need functions which take the old
database as input and returns a modified database as output.

1. Add a function to add a loan. I.e.

makeLoan : : D a t a b a s e −> Pe r s on −> Book −> D a t a b a s e
makeLoan db p e r s o n book = newloan : db

where newloan = ( book , p e r s o n ) : : Loan

2. Add a function to remove a loan. I.e.

r e t u r n L o a n : : D a t a b a s e −> P er s on −> Book −> D a t a b a s e
r e t u r n L o a n db p e r s o n book = [ l o a n |

l o a n <−db , l o a n /= ( book , p e r s o n ) ]

3. Test both functions in ghci:

4



makeLoan db1 " John " " O l i v e r Twis t "
r e t u r n L o a n db1 " John " " H u c k l e b e r r y Finn "
r e t u r n L o a n db1 " Jane " " H u c k l e b e r r y Finn "

What output do you expect? What output do you get? Compare the two.

1.8 Discussion

1. What happens if you add duplicate loans? E.g. add the following definitions in your
module:

db2 = makeLoan db1 " John " "Tom Sawyer "
db3 = r e t u r n L o a n db2 " John " "Tom Sawyer "

Note that db2 has John borrowing Tom Sawyer added twice, as it was already in db1.
In db3 this duplicate loan has been removed.

How many loans are in db3? Decide what you expect before you move on.

2. Start GHCi and evaluate the two new databases:

db2
db3

Do the results match your expectation?

3. Discuss the following:

• Should duplicate loans be allowed?

• How should duplicate loans be handled? Remember that even if it is not allowed,
a good program has to handle it as errors and prevent human error from messing
up the database.

• Do you think your/our implementation is satisfactory on this point?

1.9 Tip: Debugging output

Debugging a pure functional program can often feel like fumbling in the dark. If you have
programmed imperatively, you are hopefully used to adding extra output instruction, to see
what happens when the program runs.

Why don’t we just add such output lines in functional programs?

The answer is of course that I/O is side effects, and we don’t like side effects. We are going to
learn how to do proper I/O tomorrow, but even so it is often desirable to keep core functions
pure and without I/O.

5



However, for debugging purposes, it is possible to cheat, with the Debyg.Trace module. It
provides a couple of functions which pretend to be pure, but which still produces output. This
is good for debugging, but should otherwise be avoided. Feel free to look it up.

2 Tutorial 7: Pictures

Reading: Simon Thompson, Chapter 6

1. Do the exercises in Chapter 6.4 of Thompson

2. Do the exercises in Chapter 6.6 of Thompson

3 Tutorial 8: Credit card numbers (optional)

This exercise is based on a an exercise given by Richard Eisenberg for the cis194 module at
University of Pennsylvania. He in turn adapted it from a practicum assigned at the University
of Utrecht functional programming course taught by Doaitse Swierstra, 2008-2009.

Working with long numbers, such as national insurance numbers, account numbers, ISBN
numbers or credit card numbers, it is easy to make mistakes. Therefore such numbers are
designed using an error correcting codes. The most probable mistakes lead to an invalid
number, so that it is easily seen that an error has occurred.

In this exercise, we shall explore credit card numbers and write a functional program to valid-
ate such numbers. The validation comprises the following steps:

1. Double the value of every second digit beginning from the right. That is, the last digit is
unchanged; the second-to-last digit is doubled; the third-to-last digit is unchanged; and
so on. For example, [1,3,8,6] becomes [2,3,16,6].

2. Calculate the digit sum of each number in the list. For the one-digit numbers, this is just
the number itself. For two-digit numbers, it is the sum of the two digits. For example,
[2,3,16,6] becomes [2,3,7,6].

3. Add all the digit sums together. For example, [2,3,7,6] becomes 18.

4. Calculate the remainder when the sum is divided by 10. For example, 18 becomes 8.

5. If the result equals 0, then the number is valid. In the running example, we got 8, which
means the number is invalid.

We will implement the validation through a series of small exercises.

6

http://hackage.haskell.org/package/base-4.7.0.2/docs/Debug-Trace.html
http://www.seas.upenn.edu/~cis194/


3.1 Exercise 1

We first need to be able to split a number into its last digit and the rest of the number. Write
these functions:

l a s t D i g i t : : I n t e g e r −> I n t e g e r
d r o p L a s t D i g i t : : I n t e g e r −> I n t e g e r

Haskell has built-in functions or operators for integer division and remainder (modulo).

Examples:

lastDigit123 = 3 (1)
lastDigit9 = 9 (2)
dropLastDigit123 = 12 (3)
dropLastDigit9 = 0 (4)

Task: Implement and test the two functions described above.

3.2 Exercise 2

Now, we male a function to break a number into a list of digits. The method is the standard
approach to writing a number to base b (with b = 10 in our case). You will need the functions
from the previous exercise and apply them with recursion. The function should have the
following signature,

t o D i g i t s : : I n t e g e r −> [ I n t e g e r ]

Positive numbers must be converted to a list of digits. For 0 or negative inputs, toDigits
should return the empty list.

Examples:

toDigits1234 = [1, 2, 3, 4] (5)
toDigits0 = [] (6)
toDigits(−17) = [] (7)

Task: Implement and test the toDigits function.

7



3.3 Exercise 3

Once we have the digits in a list, we need to double every other one. Define a function

d o u b l e E v e r y O t h e r : : [ I n t e g e r ] −> [ I n t e g e r ]

Remember that doubleEveryOther doubles every other number starting from the right, i.e. the
second-to-last, fourth-to-last, and so on. This is easiest to do if the the list is put reverse order,
so that one can count from the left instead. Check out the builtin reverse function.

Examples:

doubleEveryOther[8, 7, 6, 5] = [16, 7, 12, 5] (8)
doubleEveryOther[1, 2, 3] = [1, 4, 3] (9)

Task: Implement and test the doubleEveryOther function.

3.4 Exercise 4

We need to write a function to calculate the digit sum of an arbitrary integer. The digit sum is
the sum of the digits, e.g. 7, 16, 25, and 34 each have 7 as the digit sum. Thus we are looking
for a function with the following signature:

s u m D i g i t s : : I n t e g e r −> I n t e g e r

You probably want to use toDigits as an auxiliary.

Task: Implement and test the sumDigits function.

3.5 Exercise 5

The output of doubleEveryOther has a mix of one-digit and two-digit numbers. Define the
function

s u m D i g i t s : : [ I n t e g e r ] −> I n t e g e r

to calculate the sum of all digits.

Examples:
sumDigits[16, 7, 12, 5] = 1 + 6 + 7 + 1 + 2 + 5 = 22

The sumDigits can be used as an auxiliary here.

Task: Implement and test the sumDigits function.

8



3.6 Exercise 6

Define the function

v a l i d a t e : : I n t e g e r −> Bool

that indicates whether an Integer could be a valid credit card number. This will use all func-
tions defined in the previous exercises.

Examples:

validate4012888888881881 = True (10)
validate4012888888881882 = False (11)

Task: Implement and test the validate function.

9


	Tutorial 6: Lists and Tuples
	Getting started
	Books and Persons
	The Loan Database
	Test Objects
	Retrieval functions
	More retrieval
	Modifiers
	Discussion
	Tip: Debugging output

	Tutorial 7: Pictures
	Tutorial 8: Credit card numbers (optional)
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6


