
Week 4: Testing Classifiers

Hans Georg Schaathun

25th April 2017

Time Topic Reading
8.15- Recap of tutorials last week

Lecture: Testing and Error Estimation Marsland Section 2.2
9.00- Tutorial 4.1
11.45- Lunch break
12.15- Recap/discussion of Tutorial 6

Lecture: Linear and non-linear classifiers Marsland Chapter 3.4-3.5 and
introduction to Chapter 4

13.00- Tutorial 4.2

This PDF document is available in an HTML version at http://www.hg.schaathun.
net/FPIA/week04.html.

1 Tutorial 4.1: Testing and Error Estimation

• Reading: Stephen Marsland: Chapter 2.2

• Look up estimation and confidence intervals in statistics if you do not remember what
it is and how to do it (e.g. Johnson and Bhattacharyya).

1.1 Problem 1: Splitting the data set

From previous exercises, you should have a function which loads the data set and returns a
list of pairs, where each pair contains a class label and a feature vector. We need a function to
split it into a training set and a test set.

Ideally we should split randomly, but randomness is tricky. We will learn it next week; for
now we split it naïvly and deterministically. Still, we need to make sure that both classes are
represented in both sets. There are many ways to do this, but let’s take the opportunity to
practice list processing in Haskell.
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1.1.1 Step 1: Splitting the classes

Write a function which takes a list of class label/feature vector pairs, and returns a list of lists,
where each list includes pairs with the same class label.

1. We start with a function getByClass to get all the objects of a given class. Add the
following declaration to your ANNData module.

g e t B y C l a s s : : Double −> [ ( Double , [ Double ] ) ]
−> [ ( Double , [ Double ] ) ]

The first argument is a class c, and the second is a data set as returned by getData
in the previous tutorial. The return value is a list of those objects from the input which
belong to class c.

2. Use list comprehension to add a definition for getByClass.

3. Secondly, we add a function to sort the entire data set by class. Add the following type
declaration to ANNData:

s p l i t C l a s s e s : : [ Double ] −> [ ( Double , [ Double ] ) ]
−> [ [ ( Double , [ Double ] ) ] ]

The first argument is the list of class labels in use. The second is a data set as returned
from getData. The output is a list of lists, where each constituent list is the return
value of a call to getByClass

4. Use map and getByClass to define splitClasses.

Optional improvement The above solution is not optimised for speed.

1. How many times does the splitClasses have to read through the dl list?

2. How can process the input list in a single pass?

1.1.2 Step 2: Training and Test sets

Having a list of lists of objects as returned from splitClasses, we need to take a fraction
p of the elements for training and the remaining 1− p of elements fort testing. from each list
for training and the remainder for testing. We are looking for the function with the following
type.

m k T e s t T r a i n S e t s : : Double −> [ [ ( Double , [ Double ] ) ] ]
−> ( [ ( Double , [ Double ] ) ] , [ ( Double , [ Double ] ) ] )

The first argument is the percentage p. The second argument is the list of lists as produced by
the function in Step 1.
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1. The mkTestTrainSets function takes a list of lists as input. Let’s start with a helper
function which takes just one lists and splits it in two:

m k T e s t T r a i n S e t s ’ : : Double −> [ ( Double , [ Double ] ) ]
−> ( [ ( Double , [ Double ] ) ] , [ ( Double , [ Double ] ) ] )

Add the declaration to ANNData

2. Write p and v for the inputs, and (v1, v2) for the output. Implement mkTestTrainSets’
such that v1 contains a fraction p of the elements from v and v2 contains the rest. You
need the following steps:

a) find the length l of v

b) calculate the number of elements p · l for v1

c) calculate the number of elements (1− p)l for v2

d) split the input list v into v1 and v2

In order to multiply an integer (l) with a float (p) you need to convert the integer using
the fromIntegral function. You find the list functions you need in the list on page
127 of Simon Thompson’s book.

3. We can now complete mkTestTrainSets as follows.

m k T e s t T r a i n S e t s : : Double −> [ [ ( Double , [ Double ] ) ] ]
−> ( [ ( Double , [ Double ] ) ] , [ ( Double , [ Double ] ) ] )

m k T e s t T r a i n S e t s _ [ ] = ( [ ] , [ ] )
m k T e s t T r a i n S e t s f ( d : d l ) = p repend e l

where l = m k T e s t T r a i n S e t s f d l
e = m k T e s t T r a i n S e t s ’ f d
p repend ( x , y ) ( x ’ , y ’ ) = ( x++x ’ , y++y ’ )

4. Discuss: What exactly does the local prepend function above do?

5. Discuss: Could this function have been written differently?

1.1.3 Step 3: Testing it

1. Load your ANNData module in GHCi.

2. Run the following test:

s1 <− g e t D a t a " wdbc . d a t a "
l e t s2 = s p l i t C l a s s e s [ 0 . 0 , 1 . 0 ] s1
m k T e s t T r a i n S e t s 0 . 2 s2

3. Discuss: Is the output as expected? What should you expect?
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1.2 Problem 2: Testing on a single item

Given a test set (as obtained in Problem 1) and a trained perceptron (as obtained in Tutorial 4),
we are going to test the perceptron. Let’s do a simple test for now, where we do not distinguish
between false positives and false negatives.

1. Add the following declaration to your Perceptron module:

t e s t N e u r o n ’ : : Neuron −> ( Double , [ Double ] ) ] −> Bool

The first input is a (trained) neuron and the second is a label/feature vector pair. The
output is True if the given feature vector is correctly classified by the neuron.

2. Implement the testNeuron’ function. You can use the following skeleton as a basis

t e s t N e u r o n ’ n ( t , xs ) =
where y =

You need to calculate the output y from the neuron and compare it to the target value t.

3. Discuss: How can you test this function? If possible, make a test.

1.3 Problem 3: Testing on a data set

Now we have a function to test a single neuron. How do you test the neuron on every item in
the test set?

1. Add the following type declaration to your Perceptron module:

t e s t N e u r o n : : Neuron −> [ ( Double , [ Double ] ) −> [ Bool ]

The return value is a list of boolean values, where True indicates an error and False
indicates a correct classification.

2. Add a definition for the testNeuron function, by applying testNeuron’ to every
object in the input list.

3. Discuss: How can you test this function? If possible, make a test.

1.4 Problem 4: Putting it together

Having solved Problem 2 as well as Tutorial 4, we are able to both train and test a perceptron.
Now we need to put it all into one executable program.

1. Create a Main module which loads the breast cancer data trains a perceptron on part of
the data, and tests it on the remaining data. You may use this code:
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module Main where

−− Im po r t your own modules :
import ANNData −− l oad CSV da ta
import P e r c e p t r o n −− neuron

p = 0 . 1

main : : IO ( )
main = do

d l <− g e t D a t a " wdbc . d a t a "
l e t ( t e s t S , t r a i n S ) = m k T e s t T r a i n S e t s p ( s p l i t C l a s s e s [ 0 , 1 ] d l )
l e t d l e n = l e n g t h $ snd $ head t e s t S
p r i n t $ " I n p u t l e n g t h : " ++ show d l e n
l e t u n t r a i n e d N e u r o n = i n i t N e u r o n d l e n
l e t t r a i n T a r g e t = map f s t t r a i n S
l e t t r a i n I n p u t = map snd t r a i n S
l e t t r a i n e d N e u r o n = t r a i n 1000 0 . 2 5 t r a i n I n p u t t r a i n T a r g e t u n t r a i n e d N e u r o n
p r i n t " U n t r a i n e d network , t e s t d a t a : "
t e s t P r i n t u n t r a i n e d N e u r o n t e s t S
p r i n t " U n t r a i n e d network , t r a i n i n g d a t a : "
t e s t P r i n t u n t r a i n e d N e u r o n t r a i n S
p r i n t " T r a i n e d network , t e s t d a t a : "
t e s t P r i n t t r a i n e d N e u r o n t e s t S
p r i n t " T r a i n e d network , t r a i n i n g d a t a : "
t e s t P r i n t t r a i n e d N e u r o n t r a i n S

t e s t P r i n t n s = do
l e t r e s u l t = t e s t N e u r o n n s
l e t r i g h t = l e n g t h [ x | x <− r e s u l t , x ]
l e t wrong = l e n g t h [ x | x <− r e s u l t , not x ]
p r i n t ( " C o r r e c t : " ++ show r i g h t )
p r i n t ( " E r r o r s : " ++ show wrong )

2. Add comments in the Main module to explain what each line does.

3. Discuss: What is the constant p used for?

4. Compile and test the program.

5. Discuss the output of the program. How do you interpret the different numbers?

6. Discuss. Are the error counts reasonable or not?

It is quite possible that you get a lot of classification errors. Don’t worry if you do. It is likely
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because the single neuron is a bit too simple. Next week we will discuss how to build networks
of multiple neurons.

1.4.1 Problem 5: scaling of features

A common problem in machine learning is that features with very high magnitude may dom-
inate over others, so that the classifier is not properly trained in all dimensions.

1. Look at the breast cancer data set. What is the range of the features in different columns?

2. We have prepared a scaled version of the data set. All the features have been brought
into the [0,1] range by linear scaling. Download the file and put it together with the
other files.

3. Replace wdbc.data with wdbc.csv in your Main module.

4. Recompile and test the program.

5. Compare your error rates to those of your class mates.

6. Discuss: How does scaling affect the error rates?

If the error rates are still bad, don’t worry. We will extend the single neuron perceptron to a
neural network in the next couple of tutorials.

1.5 Problem 6: Statistical analysis

Given the number of errors e and the number of tests n, we can calculate the error rate e/n.
We are interested in the probability of error, when the classifier is used on a random, unknown
object. Answer the following:

1. Discuss: What is the relationship between the error rate and the probability of error?

2. Discuss: What is the probability distribution of the number of errors e?

3. Calculate a 95% confidence interval for the error probability.

2 Tutorial 4.2: Linear and non-linear classifiers

Reading: Stephen Marsland: Chapter 3.4-3.5 and the introduction for Chapter 4.
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(b) The solution

Figure 1: The XOR classification problem.

2.1 Problem 1: A Neural Network for the XOR problem

2.1.1 Step 1: A new module

1. Review your solution to Problem 2 of Tutorial 3.2.

2. Create a new module ANN, where you import your existing Perceptron module.

import P e r c e p t r o n

3. Define a data type Network which consist of several layers. Add it to the ANN module.

2.1.2 Step 2: A network for XOR

Recall the XOR classification problem in Figure 1a. We can use the solution (Figure 1b) to test
our neural network and the recall function before we have to start thinking about training.

1. Define a neural network xorNetwork with the weights given in Figure 1b. Use the
Network type which we defined above.

2. Show the network in GHCi, to check that you have not made a syntax error or similar.

xorNetwork

3. Now we need to implement a recall function. Add the type declaration to your ANN
module.

r e c a l l N e t w o r k : : Network −> [ Double ] −> [ Double ]
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4. Implement recallNetwork, using recallLayer from Problem 2 of Tutorial 5.

5. Discuss: Which is the output layer? Is it first or last element in the list which makes up
the Network?

6. Finally, test your definitions with the following evaluations:

r e c a l l N e t w o r k xorNetwork [ 0 , 0 ]
r e c a l l N e t w o r k xorNetwork [ 0 , 1 ]
r e c a l l N e t w o r k xorNetwork [ 1 , 0 ]
r e c a l l N e t w o r k xorNetwork [ 1 , 1 ]

7. Discuss: Is the output as expected?

2.1.3 Step 3: Bug search

There are two common sources of errors in this network/implementation.

1. What is the value of the threshold function at 0? I.e. does the neuron fire when the
sum is exactly 0. In floating point problems, this hardly matters, but with the binary xor
problem it does. If your test fails, try to change the threshold function.

2. What is the sign of the quasi-input x0? Very often we use -1, but some authors use +1.
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