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1 Tutorial 5.1: The Backpropagation Algorithm

Reading: Stephen Marsland, Chapter 4

Today, you need to implement and test the backpropagation algorithm as described in Mars-
land’s book. You can build on the perceptron from last week, as well as the multi-layer network
which you used on the XOR problem in Tutorial 7. However, it is a good idea to take a copy
of what you have before making changes.

1.1 Tasks

We up the challenge compared to last week. With spoon feeding out the window, you need
to manage the big picture yourselves. The objective is straight-forward, to implement back-
propagation to train a multi-layer neural network. Several smaller tasks must be covered,
including:

First we focus on training the network using only one item from the training set.
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* where o ranges over the output nodes
Figure 1: The Backpropagation algorithm.

trainNetworkOne :: Double —> Network —> (Double,[ Double]) —> Network

This is a big problem which you need to break up into subproblems.

1.1.1 Task 1: New threshold function

You need to adopt the sigmoid instead of the hard threshold function.

1.1.2 Task 2: Forward pass

The forward pass is essentially the recall. However, you are going to need the output from
every layer in the backward pass. Hence you need to store the inputs for each layer as well as
the final output. Thus you get an object of type [[Double]], instead of just the [Double] that
you would get from the output layer.

You can choose between two options.

1. Assume two layers [h1, ol] and calculate the intermediate output/input xs’ and final
output ys, and return [xs, xs’,ys].

2. Do the forward pass recursively for an arbitrary number of layers.
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1.1.3 Task 3: Backward pass
The formula for backpropagation are shown in Figure [l Contrary to the previous talk, it
includes the case with multiple output nodes.

Observe what variables you need when you update the weights in the hidden layer. You need
the input and output for the layer, as well as the ds from the output layer. It follows that
you need to calculate and keep the ds and feed them to the previous layer. You also need the
intermediat input/output from the forward pass.

It is possible to implement backpropagation for an arbitrary number of layers, but it takes
significant experience with recursion. Here we will only indicate a solution for two-layer
networks.

Output layer Starting on the backward pass, we have a list of neurons (the layer), and a
list of outputs ys (one y per neuron).

1. Start by making a function to update a single neuron, based on the existing neuron and
corresponding y. It needs to output a pair, comprising the new neuron and the 6 used in
the calculation.

2. You can use zipWith and the function you just made to update a complete layer. The
output is a list of neuron/d pairs.

Accumulating 6s So far we have a list of neuron/d pairs. This is required to update the
weights in the hidden layer, the but only in the factor > dw;. Each hidden neuron has a
different value for w;, and thus a different sum.

You need a function to calculate these sums, and return a list with one sum for each neuron in
the hidden layer.

Hidden layer Starting on the hidden layer, you have four important pieces of information.

1. The input to the network
2. The output from the hidden layer as calculated in the forward pass.
3. The sums of s calculated above.

4. The hidden layer itself, with neurons and their weights

To update weights, start with a function to do a single neuron; then proceed with the complete
layer using map, zipWith, recursion, or some similar technique.



Completing the backpropagation algorithm Armed with the functions designed above,
you can write the t rainNetworkOne function to train the full network:

trainNetworkOne :: Double — Learning rate (eta)
—> Network — Old network
—> (Double ,[ Double]) — One data item (row)
—> Network — Updated network

1.1.4 Task 4: Training on a full training set

epoch :: Double —> Network —> [(Double,[Double])] —> Network
epoch eta n samples = foldl’  (trainNetworkOne eta) n samples

Question. What does the foldl’ function do? Use google or check the textbook.

1.1.5 Task 5: Many iterations

To fully train a network, multiple epochs are required. We need a function to recursing to run
epoch n times.

More advanced stop criteria are possible, running a variable number of epochs depending on
how quickly the weights converge.

1.1.6 Task 6: Testing

Test the classifier, using the ideas discussed in Tutorial 6.

The following is an example of an executable module to test a classifier. It prints error rates to
the standard output. You need to define four functions to use it (see comments).

module Main where

import ANNData == your module to load CSV data
— it should define mkTestTrainSets

import NeuralNetwork == your module defining a backpropagation network

— it should define:
— initNetwork
— trainNetwork
—_ testNetwork

p=0.1

main :: 10 ()



main = do
dl <— getData "wdbc.csv"
let (testS ,trainS) = mkTestTrainSets p (splitClasses [0,1] dl)

— Get the length of the feature vector
let dlen = length $ fst $ testS!!0
print $ "Input_length: " ++ show dlen

— Initialise and train network.
let untrainedNN = [initLayer 6 dlen, initLayer 1 dlen]
let trainedNN = trainNetwork 0.25 trainS 1000 untrainedNN

— Test and print (see definition below)
print "Untrained_network, test_data:"
testPrint untrainedNN testS

print "Untrained_network, _ training_data:"
testPrint untrainedNN trainS

print "Trained_network, test_data:"
testPrint trainedNN testS

print "Trained_network,  training_data:"
testPrint trainedNN trainS

— Auxiliar function.
testPrint n s = do
let result = testNetwork n s
— testNetwork n s tests the classifier n on the data set s
— and returns a list of Boolean, indicating which data
— were correctly classified

let right length [ x | x <— result, x |

let wrong = length [ x | x <— result, not x |
print ( "Correct: " ++ show right )

print ( "Errors: ++ show wrong )

"
—

1.2 Stack space overflow

It sometimes happens that you get a run time error, saying «Stack space overflow». This is
often caused by Haskell’s lazyness. Haskell will only evaluate an expression when the value
is needed. All the unevaluated expressions must be stored, and sometimes the available stack
space 1is filled up by unevaluated expressions. Especially recursive calls may under certain
circumstances accumulate an exessive number of lazily unevaluated expressions.



1.2.1 Increasing stack space

There are runtime options to increase the stack space. If your program is called test, you
can for instance run

./ test +RTS —KI1OM

to increas the stack space to 10Mb.

You may experiment with different stack space sizes, but be aware that if you make it very
large, the system may become very slow to respond because your program completely fills up
the physical memory.

1.2.2 Strict evaluation

Increasing stack space is often useful, but very often we find that algorithms which should be
able to run in constant stack space regardless of program size, in fact requires more and more
stack space as parameter values increase. Then we need another solution.

As mentioned, the problem is with lazy, or more correctly non-strict, evaluation. A strict func-
tion will always evaluate its arguments. A non-strict function, which is the norm in Haskell,
does not necessarily evaluate its arguments.

It is possible to make functions strict in one or more arguments. For example like this

{—# LANGUAGE BangPatterns #-—}

foobar x ly =
where
lz =

The first line is a so-called pragma which is used to enables language extensions. The ex-
planation mark is also known as a bang, and the notation using the explanation mark to force
strictness is a bang pattern. Here, y is made strict, so a call to foobar will always force
evaluation of the second argument. Similarly, there is a strict binding of z which means that
it too is always evaluated.

Good use of bang patterns is not quickly learnt. You will have to look for other literature and
examples when you need it.
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