
Week 13: The continuous GA

Robin T. Bye

25th April 2017

Time Topic Reading
09.15 Overview and status update
09.30 Lecture: The continuous GA
10.30 Workshop/tutorial: The continuous GA *

* Please read and follow the instructions given in the workshop documents before coming to
class!

Date for workshop: Tuesday 18 April

This PDF document is available in an HTML version at
http://www.hg.schaathun.net/FPIA/week13.html

Contents

1 Tutorial: Continuous GA 1
1.1 A continuous GA for string learning . . . . . . . . . . . . . . . . . . . . . . 2
1.2 GA settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Target strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Genes, chromosomes, and the population . . . . . . . . . . . . . . . . . . . 3
1.6 Normalisation and denormalisation . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 Encoding functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7.1 The encodeChar function . . . . . . . . . . . . . . . . . . . . . . 5
1.7.2 The encodeString function . . . . . . . . . . . . . . . . . . . . 6
1.7.3 The encodeStringList function . . . . . . . . . . . . . . . . . 6

1.8 Decoding functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8.1 The decodeGene function . . . . . . . . . . . . . . . . . . . . . . 7
1.8.2 The decodeChromosome function . . . . . . . . . . . . . . . . . 7
1.8.3 The decodePopulation function . . . . . . . . . . . . . . . . . 7

1

http://www.hg.schaathun.net/FPIA/week13.html


1.9 Randomness functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.9.1 The randGene function . . . . . . . . . . . . . . . . . . . . . . . . 8
1.9.2 The randGenes function . . . . . . . . . . . . . . . . . . . . . . . 8
1.9.3 The randChrom function . . . . . . . . . . . . . . . . . . . . . . . 9
1.9.4 The randChroms function . . . . . . . . . . . . . . . . . . . . . . 9
1.9.5 The randPop function . . . . . . . . . . . . . . . . . . . . . . . . 10
1.9.6 The randIndex function . . . . . . . . . . . . . . . . . . . . . . . 10

1.10 Cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.10.1 The elemCost function . . . . . . . . . . . . . . . . . . . . . . . . 10
1.10.2 The stringCost function . . . . . . . . . . . . . . . . . . . . . . 11
1.10.3 The chromCost function . . . . . . . . . . . . . . . . . . . . . . . 11
1.10.4 The chromCostPair function . . . . . . . . . . . . . . . . . . . . 11

1.11 Population functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.11.1 The evalPop function . . . . . . . . . . . . . . . . . . . . . . . . 12
1.11.2 The sortPop function . . . . . . . . . . . . . . . . . . . . . . . . 13
1.11.3 The selection function . . . . . . . . . . . . . . . . . . . . . . . 13
1.11.4 The getParents function . . . . . . . . . . . . . . . . . . . . . . 14
1.11.5 The toPopulation function . . . . . . . . . . . . . . . . . . . . 14
1.11.6 Testing the population functions . . . . . . . . . . . . . . . . . . . . 14

1.12 Mating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.12.1 The crossover function . . . . . . . . . . . . . . . . . . . . . . . 15
1.12.2 The matePairwise function . . . . . . . . . . . . . . . . . . . . 16

1.13 Mutation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.13.1 The replaceAtIndex function . . . . . . . . . . . . . . . . . . . 18
1.13.2 The mutateChrom function . . . . . . . . . . . . . . . . . . . . . 18
1.13.3 The mutateChromInPop function . . . . . . . . . . . . . . . . . 19
1.13.4 The mutIndices and mutatePop functions . . . . . . . . . . . . 19

1.14 Evolution functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.14.1 The evolvePopOnce function . . . . . . . . . . . . . . . . . . . . 20
1.14.2 The evolvePop function . . . . . . . . . . . . . . . . . . . . . . . 21

1.15 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Exercises 22
2.1 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Solve your own problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1 Tutorial: Continuous GA

In this tutorial, we will implement a continuous GA based on the binary GA that we imple-
mented in the previous works. A lot of the binary GA code can be reused as is or just slightly
modified, and also some code related to the binary encoding can simply be removed. There-
fore, this tutorial will necessarily contain much of the same information as the tutorial on the
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binary GA.

To keep things simple, we will convert the binary GA that was able to learn strings into a
continuous GA for doing the same thing. After having completed the tutorial, you should try
to modify it so that it can be used to solve and optimise test functions such as those given in
the appendix of Haupt & Haupt (2004), which is available on Fronter.

1.1 A continuous GA for string learning

The purpose of this GA is to discover, or learn, a target string. To learn the target string,
the GA will contain a population of candidate solutions (chromosomes) that represent strings.
Each chromosome is a guess and can be evaluated and assigned a cost, where the cost should
relate to the difference between the string it represents and the target string.

The GA can then evolve the population over several generations until one or more of the
individuals in the population become the target string. Such individuals will have a cost of
zero.

Note that this example is adapted from (and is slightly easier than) the song learning example
in Chapter 4 of Haupt & Haupt (2004), where a GA is used to learn the song “Mary had a little
lamb.”

We begin by creating a module ContinuousGA.hs for our code:
1 module ContinuousGA where

1.2 GA settings

Before we proceed, it is useful to add some GA parameter settings to the top of our file so
that they can easily be found and tweaked when we will test the GA later. We adopt the
terminology used in class and in Haupt & Haupt and define the following parameters with
some default settings:

1 numPop = 40 :: Int -- Population size (number of chromosomes)
2 xRate = 0.5 :: Double -- Selection rate
3 mutRate = 0.1 :: Double -- Mutation rate
4 numElite = 1 :: Int -- Number of elite chromosomes
5 itMax = 1000 :: Int -- Max number of iterations

1.3 Alphabet

The alphabet is the set of possible symbols, or characters, that can constitute a string. We
store the alphabet as a string with 48 characters

1 alphabet’ = "abcdefghijklmnopqrstuvwxyz0123456789.,;:?!_+-*/ " :: String
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Please note that the final character " " in alphabet’ is the space character and must not be
removed. Because we are using a continuous (real-valued) GA, we do not have to worry about
binary encoding and padding the alphabet to make it have a length that is a power of 2.

1.4 Target strings

For testing and debugging purposes, we define a set of test strings:
1 s1, s2, s3, s4, s5, s6 :: String
2 s1 = "h"
3 s2 = "abc"
4 s3 = "hello world!"
5 s4 = "abc123.,;"
6 s5 = "descartes: cogito ergo sum"
7 s6 = "2+2 is: 4, 2*2 is: 4; why is _/not/_ 2.2*2.2 equal to 4.4?!"
8 target = s2

1.5 Genes, chromosomes, and the population

In the following, we will assume that a gene is a continuous real-valued variable normalised
to the range [0, 1] and encodes a single character, and that a chromosome is a list of genes that
encodes a string.

The number of characters in the target string is sometimes called the number of (encoding)
variables, numVar:

1 numVar = length target :: Int -- Number of characters (genes) in target

This number tells us how many genes are required in each chromosome.

Next, we need to know the number of chromosomes numKeep to keep between generations.
This number is a fraction (the selection rate xRate) of the population size numPop and
should be rounded up to the nearest even number to simplify the mating procedure:

1 numKeep | numKeep’’ > numPop = numPop - numPop ‘mod‘ 2
2 | numKeep’’ < 2 = 2
3 | otherwise = numKeep’’
4 where numKeep’’ = numKeep’ + numKeep’ ‘mod‘ 2
5 numKeep’ = ceiling $ xRate * fromIntegral numPop :: Int

For example, for numPop = 40 and xRate = 0.5, we get numKeep = 20. Some cases
are introduced for safety to ensure numKeep is always greater than or equal to 2, and always
smaller than or equal to numPop.

We also need to determine the number of chromosomes to mutate, numMut, which is a frac-
tion (the mutation rate mutRate) of the population size, and must be rounded up to nearest
integer:
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1 numMut = ceiling $ mutRate * fromIntegral numPop :: Int

For numPop = 40 and mutRate = 0.1, we get numMut = 4.

Finally, we define some type aliases for readability and debugging purposes:
1 type Gene = Double
2 type Chromosome = [Gene]
3 type Population = [Chromosome]

First of all, note that we possibly could have used an integer type such as Int for Gene,
however, we want our GA to be general purpose and able to handle other problems where the
variables will not be characters that can be represented by integers but real-valued numbers,
e.g., to optimise the test functions in the appendix in Haupt & Haupt (2004).

Exercise: Experiment with different alphabets and different values for numPop, xRate, and
mutRate and verify that numGene, numKeep, and numMut are calculated correctly by
testing in the ghci.

1.6 Normalisation and denormalisation

The plan is to normalise the genes values to gi ∈ [0, 1], however, the characters in the alpha-
bet can be represented as integers that corresponds to their position (index) in the alphabet.
Hence, we need a normalise function to convert variable pi, which is an integer in the
range [0, length alphabet − 1], to a real-valued gene gi in the range [0, 1], and likewise, a
denormalise function to convert back from a gene to a variable value.

We begin by defining the constraints on variable values and gene values:
1 -- Variable constraints
2 pLo = 0.0 :: Double
3 pHi = fromIntegral $ length alphabet - 1 :: Double
4

5 -- Gene constraints
6 gLo = 0.0 :: Double
7 gHi = 1.0 :: Double

To normalise a variable p in the range [plow, phigh] to a range [glow = 0, ghigh = 1], we can use
the following formula:

pnorm =

(
plow +

p− plow

phigh − plow

)
(ghigh − glow) + glow (1)

which simplifies to

pnorm = plow +
p− plow

phigh − plow
(2)

for glow = 0 and ghigh = 1.

The normalise function becomes
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1 -- Normalise a variable to range [gLo, gHi] with safety checks
2 normalise :: Double -> Double
3 normalise p = p’
4 where p’ | normalise’ p < gLo = gLo
5 | normalise’ p > gHi = gHi
6 | otherwise = normalise’ p
7

8 -- Normalise a variable to range [gLo, gHi], unsafe
9 normalise’ :: Double -> Double

10 normalise’ p = pnorm * (gHi - gLo) + gLo
11 where pnorm = pLo + (p - pLo) / (pHi - pLo)

where we add some cases for safety to ensure that the normalised variable pnorm stays within
the limits of [glow = 0, ghigh = 1].

The denormalise function becomes
1 denormalise :: Double -> Double
2 denormalise pNorm = pNorm * (pHi - pLo) + pLo

1.7 Encoding functions

We need a function encodeString to encode a string as a Chromosome. This means
that if we have another function encodeChar that can encode a single character as a Gene,
we can just map that function over a string, which is a list of characters, in order to ob-
tain the encoded Chromosome. In addition, it will likely prove useful to have a function
encodeStringList that can encode a list of strings as a Population.

1.7.1 The encodeChar function

Let us begin with defining the encodechar function:
1 -- Encode a single character as a gene
2 encodeChar :: Char -> Gene
3 encodeChar c = normalise $ fromIntegral $ stripMaybe index
4 where index = elemIndex c alphabet
5 stripMaybe (Just index) = index
6 stripMaybe (Nothing) = error $ "elemIndex returned Nothing. " ++
7 "A character is not in the alphabet!"

Given a character c, the function should return a normalised gene that corresponds to the
character’s index in alphabet.

A convenient function to determine the index of an element in a list is elemIndex, which is
part of the Data.List library:

1 import Data.List (elemIndex)
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Its type signature is given by
elemIndex :: Eq a => a -> [a] -> Maybe Int
Therefore, we will need to “strip” the Just from the return value. which is done by the helper
function stripMaybe.

We can test the encodeChar function in the interpreter:
1 *ContinuousGA> encodeChar ’a’
2 0.0
3 *ContinuousGA> encodeChar ’b’
4 2.127659574468085e-2
5 *ContinuousGA> encodeChar ’/’
6 0.9787234042553191

1.7.2 The encodeString function

The encodeString function is simple enough:
1 encodeString :: String -> Chromosome
2 encodeString = map encodeChar

We just map encodechar over a list of characters (a string) to obtain a list of encoded genes,
or a Chromosome.

We can test the function in ghci:
1 *ContinuousGA> encodeString "abc"
2 [0.0,2.127659574468085e-2,4.25531914893617e-2]
3 *ContinuousGA> encodeString "*/ "
4 [0.9574468085106383,0.9787234042553191,1.0]

1.7.3 The encodeStringList function

The encodeStringList function is just as simple:
1 encodeStringList :: [String] -> Population
2 encodeStringList = map encodeString

The output in ghci for a list of two test strings yields
1 *ContinuousGA> encodeStringList ["ab","*/"]
2 [[0.0,2.127659574468085e-2],[0.9574468085106383,0.9787234042553191]]

Exercise: What happens if one of the encoding functions above encounter a character not in
alphabet?
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1.8 Decoding functions

In addition to encoding functions, we also need decoding functions able to convert back from
normalised genes to characters in alphabet.

1.8.1 The decodeGene function

we define a decodeGene function that converts a Gene to an index (a decimal number) and
then accesses the character at the index position in alphabet using the !! function:

1 decodeGene :: Gene -> Char
2 decodeGene g = alphabet!!idx
3 where idx = round $ denormalise g

Example usage in ghci:
1 *ContinuousGA> decodeGene 0.0
2 ’a’
3 *ContinuousGA> decodeGene 0.01
4 ’a’
5 *ContinuousGA> decodeGene 0.02
6 ’b’
7 *ContinuousGA> decodeGene 0.98
8 ’/’
9 *ContinuousGA> decodeGene 0.99

10 ’ ’
11 *ContinuousGA> decodeGene 1.0
12 ’ ’

Exercise: What happens if a gene is outside the range [0, 1]?

1.8.2 The decodeChromosome function

To decode a Chromosome, we just map the decodeGene function over it to obtain the
corresponding string of characters:

1 decodeChromosome :: Chromosome -> String
2 decodeChromosome = map decodeGene

Here is an example in ghci:
1 *ContinuousGA> let band = encodeString "ac/dc"
2 *ContinuousGA> band
3 [0.0,4.25531914893617e-2,0.9787234042553191,6.382978723404255e-2,4.25531914893617e-2]
4 *ContinuousGA> decodeChromosome band
5 "ac/dc"
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1.8.3 The decodePopulation function

It is also convenient to have a function able to decode an entire Population of chrosomoses
to a list of decoded strings. For this, we just map the decodeChromosome function over
the population list of chromosomes:

1 decodePopulation :: Population -> [String]
2 decodePopulation = map decodeChromosome

Example functionality in ghci:
1 *ContinuousGA> let pop = encodeStringList ["ac/dc","heavy","rock!"]
2 *ContinuousGA> pop
3 [[0.0,4.25531914893617e-2, ...],
4 [0.14893617021276595, ...],
5 [0.3617021276595745, ...]]
6 *ContinuousGA> decodePopulation pop
7 ["ac/dc","heavy","rock!"]

1.9 Randomness functions

Randomness is vital for a GA, e.g., to create a random initial population, a random crossover
point, a random mutation, and so on. We will use two functions from the System.Random
library to implement the functions we need for randomness, namely StdGen and randomR:

1 import System.Random (StdGen, randomR)

It will be convenient to have functions for generating random genes, chromosomes, and pop-
ulations; and also for generating a random index (e.g., a crossover point) in a list.

Note that the reason we also return a StdGen in many or most of the functions dealing with
randomness is so that we can repeatedly apply them, e.g., in a genetic evolution. In such cases,
we need to pass on a StdGen for the next function calls.

1.9.1 The randGene function

The randGene function generates a random number of type Gene in the range [glow, ghigh]:
1 randGene :: StdGen -> (Gene, StdGen)
2 randGene g = (value, g’)
3 where (value, g’) = randomR (gLo, gHi) g

1.9.2 The randGenes function

The randGenes function uses the randGene function to generate a list of random genes
with length n:
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1 -- Create a list with n random genes
2 randGenes :: Int -> StdGen -> ([Gene], StdGen)
3 randGenes 0 g = ([], g)
4 randGenes n g =
5 let (value, g’) = randGene g
6 (restOfList, g’’) = randGenes (n-1) g’
7 in (value:restOfList, g’’)

For convenience, we also implement a version of this function, randGene’, that does not
return StdGen:

1 -- Create a list with n random genes, do not return StdGen
2 randGenes’ :: Int -> StdGen -> [Gene]
3 randGenes’ n g = take n $ randomRs (gLo, gHi) g

1.9.3 The randChrom function

The randChrom and randChrom’ functions are identical to randGenes and randGenes’,
respectively, except that they return a Chromosome instead of a list of genes [Gene]:

1 -- Random chromosome with n genes
2 randChrom :: Int -> StdGen -> (Chromosome, StdGen)
3 randChrom n g = randGenes n g
4

5 -- Random chromosome with n genes, do not return StdGen
6 randChrom’ :: Int -> StdGen -> Chromosome
7 randChrom’ n g = randGenes’ n g

1.9.4 The randChroms function

The randChroms function uses the randChrom function to generate a list of cn random
chromosomes, each with length gn:

1 -- Create a list with cn random chromosomes with gn genes
2 randChroms :: Int -> Int -> StdGen -> (Population, StdGen)
3 randChroms 0 _ g = ([], g)
4 randChroms cn gn g =
5 let (value, g’) = randChrom gn g
6 (restOfList, g’’) = randChroms (cn-1) gn g’
7 in (value:restOfList, g’’)

Again, we can also define a randChrom’ function that does the same thing as randChrom
but does not return at StdGen:

1 randChroms’ :: Int -> Int -> StdGen -> Population
2 randChroms’ cn gn g = chunksOf gn values
3 where values = randGenes’ (cn * gn) g

This function requires the use of the function chunksOf in the Data.List.Split library:
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1 import Data.List.Split (chunksOf)

That is, we first generate a large list of cn × gn genes, and then we split that list into a list of
sublists, each of length gn.

1.9.5 The randPop function

The randPop function is just a special case of the randChroms function that generates a
list of cn = numPop random chromosomes, each with gn = numVar genes:

1 -- Random population with numPop chromosomes with numVar genes
2 randPop :: StdGen -> (Population, StdGen)
3 randPop = randChroms numPop numVar

And again, we can also define a randPop’ function that does not return a StdGen if we
want to:

1 -- Random population with numPop chromosomes with numVar genes,
2 -- do not return StdGen
3 randPop’ :: StdGen -> Population
4 randPop’ = randChroms’ numPop numVar

1.9.6 The randIndex function

Finally, the randIndex function returns a random index of a list xs of length n in the closed
interval [0, n− 1]:

1 -- Random index in a chromosome
2 randIndex :: StdGen -> [a] -> (Int, StdGen)
3 randIndex g xs = (ind, g’)
4 where (ind, g’) = randomR (0, length xs - 1) g

1.10 Cost functions

Before we proceed with implementing the core of the GA, namely operations such as selection,
mating, mutation, and evolution, we need functions to evaluate the cost of chromosomes.

1.10.1 The elemCost function

We begin with the elemCost function, which has the type signature
elemCost :: (Eq a) => a -> a -> Int
The function compares two elements or items of comparable generic type a belonging to the
typeclass Eq and returns a cost of zero if they are equal or a cost of one if they are unequal:
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1 -- Compare two inputs and return zero if equal, 1 otherwise
2 elemCost a b | a == b = 0
3 | otherwise = 1

We can then use elemCost together with zipWith to find the accumulated cost of two lists
of elements, e.g., a gene or a string.

Some examples of usage in ghci include:
1 *ContinuousGA> elemCost 5 13
2 1
3 *ContinuousGA> elemCost 1 1
4 0
5 *ContinuousGA> elemCost ’a’ ’b’
6 1
7 *ContinuousGA> elemCost ’a’ ’c’
8 1
9 *ContinuousGA> elemCost ’a’ ’a’

10 0

1.10.2 The stringCost function

The stringCost function is implemented by zipping together two lists of characters (two
strings) with the elemCost function and summing the result:

1 -- Sum the number of unequal chars, char by char, of two strings
2 stringCost :: String -> String -> Int
3 stringCost s1 s2 = sum $ zipWith elemCost s1 s2

Example usage in ghci:
1 *ContinuousGA> let s1 = "ac/dc"
2 *ContinuousGA> let s2 = "ac*dc"
3 *ContinuousGA> stringCost s1 s2
4 1

1.10.3 The chromCost function

The chromCost function uses the stringCost function to compare a target string with
the string decoded from a chromosome:

1 -- Sum the number of incorrect characters in a chromosome
2 chromCost :: String -> Chromosome -> Int
3 chromCost target c = stringCost target (decodeChromosome c)

Example usage in ghci:
1 *ContinuousGA> let c = encodeString s2
2 *ContinuousGA> chromCost s1 c
3 1
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1.10.4 The chromCostPair function

As we shall see later, it is convenient to store the evaluated cost of a chromosome together
with the chromosome itself in a tuple. For example, if we have a population of such tuples,
we can sort it in increasing order of cost (ranking), which is necessary for selection, where we
typically want to select better chromosomes before worse ones.

We therefore define a new type
1 type ChromCost = (Int, Chromosome)

Next, we define a chromCostPair function to construct such tuples:
1 chromCostPair :: String -> Chromosome -> ChromCost
2 chromCostPair target c = (chromCost target c, c)

Note that we use the target string representation as an input to the function instead of its
chromosome representation that we used when we defined the function for the binary GA.

Using the variables defined above, we can test the function in ghci:
1 *ContinuousGA> chromCostPair s1 c
2 (1,[0.0,4.25531914893617e-2,0.9574468085106383,6.382978723404255e-2,4.25531914893617e-2])

The first part of the tuple is the cost of chromosome c, that is, the number of characters in the
decoded string that c represents that differ from the target string s1. The second part of the
tuple is the chromosome c itself.

1.11 Population functions

We now turn our attention to some functions dealing with an entire population of chromo-
somes. The functions below are used to evaluate the cost of each chromosome in a pop-
ulation (evalPop); to sort a population in increasing order of cost (sortPop); to select
chromosomes apart from elite chromosomes to keep for next generation and to use for mating
(selection); get a list of chromosomes to be used as parents for mating (getParents);
and to convert a list of (cost, chromosome) pairs, [ChromCost], to type Population.

1.11.1 The evalPop function

The evalPop function evaluates all of the chromosomes in a population by comparing the
decoded chromosomes (strings) with a target string and returns list of ChromCost. This is
accomplished by mapping the partial function chromCostPair target over the popu-
lation. This is an example of partial function application, where we call a function with too
few parameters and get back a partially applied function, that is, a function that takes as many
parameters as we left out.
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1 evalPop :: String -> Population -> [ChromCost]
2 evalPop target = map (chromCostPair target)

Example usage in ghci:
1 *ContinuousGA> let target = "ac/dc"
2 *ContinuousGA> let s1 = "ac*dc"
3 *ContinuousGA> let s2 = "hello"
4 *ContinuousGA> let s3 = "a1234"
5 *ContinuousGA> let s4 = "ac/dc"
6 *ContinuousGA> let pop = encodeStringList [s1,s2,s3,s4]
7 *ContinuousGA> let popEvaluated = evalPop target pop
8 *ContinuousGA> popEvaluated
9 [(1,[0.0,4.25531914893617e-2, ...]),

10 (5,[0.14893617021276595,8.51063829787234e-2, ...]),
11 (4,[0.0,0.574468085106383,0.5957446808510638, ...]),
12 (0,[0.0,4.25531914893617e-2,0.9787234042553191, ...])]

1.11.2 The sortPop function

To sort a population, we can use the sort function from the Data.List library. We there-
fore add sort to our import statement:

1 import Data.List (elemIndex, sort)

The sortPop function is then implemented simply as
1 sortPop :: [ChromCost] -> [ChromCost]
2 sortPop pop = sort pop

Note that this works because when given a list of tuples (ChromCost is a (cost, chromosome)
pair, or tuple), sort sorts the list by the first element of the tuples, namely the cost.

Of course, we could have used sort directly, however, implementing sortPop ensures
correct types so it adds some safety to our code.

Example usage in ghci using the evaluated population above:
1 *ContinuousGA> sortPop popEvaluated
2 [(0,[0.0,4.25531914893617e-2, ... ]),
3 (1,[0.0,4.25531914893617e-2,0.9574468085106383, ...]),
4 (4,[0.0,0.574468085106383,0.5957446808510638, ...]),
5 (5,[0.14893617021276595,8.51063829787234e-2, ...])]

1.11.3 The selection function

In addition to numElite elite chromosomes, a number of other chromosomes must be kept
in the population for the next generation and also serve the role as parents for mating. There
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are several ways to select such chromosomes, including roulette wheel selection, tournament
selection, random selection, etc. Here, we just take a fraction xRate (called the selection
rate) of a sorted (ranked) population. The total number of elite chromosomes plus selected
chromosomes should equal numKeep. A possible implementation of a selection function
is given below:

1 selection :: [ChromCost] -> [ChromCost]
2 selection pop = take (numKeep - numElite) $ drop numElite pop

1.11.4 The getParents function

The getParents function returns the chromosomes to keep in the population for the next
generation and to serve as parents. These chromosomes consists of the numElite best chro-
mosomes in the population plus some chromosomes that are selected using the selection
function above.

1 getParents :: [ChromCost] -> [ChromCost]
2 getParents pop = (take numElite pop) ++ selection pop

1.11.5 The toPopulation function

For some of the genetic operations dealing with the population, it may be convenient not to
have to handle a list of (cost, chromosome) pairs but just a list of chromosomes. We there-
fore define a function toPopulation to perform a conversion of a list of ChromCost to
Population:

1 toPopulation :: [ChromCost] -> Population
2 toPopulation [] = []
3 toPopulation ((cost,chrom) : pop) = chrom : toPopulation pop

1.11.6 Testing the population functions

We can test the population functions in ghci. First, we set the GA parameters in the module
that will affect the functions:

1 numPop = 8 :: Int -- Population size (number of chromosomes)
2 xRate = 0.5 :: Double -- Selection rate
3 numElite = 2 :: Int -- Number of elite chromosomes

That is, we will play with a population of numPop == 8 chromosomes, keep numKeep ==
4 chromosomes, of which numElite == 2 shall be elite chromosomes.

In ghci, we do the following:
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1 *ContinuousGA> let stringList = ["cde","klm","123","*/
2 ","bbb","abb","aab","aah"]
3 *ContinuousGA> let targetString = "aah"
4 *ContinuousGA> let pop = encodeStringList stringList
5 *ContinuousGA> let sortedPop = sortPop $ evalPop targetString pop
6 *ContinuousGA> sortedPop
7 [(0,[0.0,0.0,0.14893617021276595]),
8 (1,[0.0,0.0,2.127659574468085e-2]),
9 (2,[0.0,2.127659574468085e-2,2.127659574468085e-2]),

10 (3,[2.127659574468085e-2,2.127659574468085e-2,2.127659574468085e-2]),
11 (3,[4.25531914893617e-2,6.382978723404255e-2,8.51063829787234e-2]),
12 (3,[0.2127659574468085,0.23404255319148937,0.2553191489361702]),
13 (3,[0.574468085106383,0.5957446808510638,0.6170212765957447]),
14 (3,[0.9574468085106383,0.9787234042553191,1.0])]
15 *ContinuousGA> let selectedChroms = selection sortedPop
16 *ContinuousGA> selectedChroms
17 [(2,[0.0,2.127659574468085e-2,2.127659574468085e-2]),
18 (3,[2.127659574468085e-2,2.127659574468085e-2,2.127659574468085e-2])]

That is, the selectedChroms are the third and fourth chromosome in the sorted popu-
lation, because the selection function ignores the first numElite == 2 chromosomes
and takes the next two chromosomes so that the total is equal to numKeep == 4.

Next, we can use the getParents function to complete the selection process, leaving us
with the top four chromosomes:

1 *ContinuousGA> let parents = getParents sortedPop
2 *ContinuousGA> parents
3 [(0,[0.0,0.0,0.14893617021276595]),
4 (1,[0.0,0.0,2.127659574468085e-2]),
5 (2,[0.0,2.127659574468085e-2,2.127659574468085e-2]),
6 (3,[2.127659574468085e-2,2.127659574468085e-2,2.127659574468085e-2])]

If we are curious which strings these chromosomes correspond to, we can use the function
toPopulation to convert from a [ChromCost] list to a Population, and then decode
the population:

1 *ContinuousGA> let parentsAsPop = toPopulation parents
2 *ContinuousGA> decodePopulation parentsAsPop
3 ["aah","aab","abb","bbb"]

1.12 Mating functions

We are finally ready to begin implementing the core components of the GA, namely mating,
mutation, and evolution. We begin with two function required for mating, the single point
crossover function and the matePairwise function.
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1.12.1 The crossover function

The function crossover is used for mating with single point crossover:
1 crossover :: Int -> Chromosome -> Chromosome -> Population
2 crossover cp ma pa = [take cp ma ++ drop cp pa, take cp pa ++ drop cp ma]

Given a crossover point cp, a mother chromosome ma, and a father chromosome pa, it returns
two offspring, where one consists of the genes in ma and pa before and after cp, respectively,
and the other consists of the remaining genes from ma and pa.

Example usage in ghci:
1 *ContinuousGA> let s1 = "abcd"
2 *ContinuousGA> let s2 = "efgh"
3 *ContinuousGA> let c1 = encodeString s1
4 *ContinuousGA> let c2 = encodeString s2
5 *ContinuousGA> c1
6 [0.0,2.127659574468085e-2,4.25531914893617e-2,6.382978723404255e-2]
7 *ContinuousGA> c2
8 [8.51063829787234e-2,0.10638297872340426,0.1276595744680851,0.14893617021276595]
9 *ContinuousGA> crossover 0 c1 c2

10 [[8.51063829787234e-2,0.10638297872340426,0.1276595744680851,0.14893617021276595],
11 [0.0,2.127659574468085e-2,4.25531914893617e-2,6.382978723404255e-2]]
12 *ContinuousGA> crossover 1 c1 c2
13 [[0.0,0.10638297872340426,0.1276595744680851,0.14893617021276595],
14 [8.51063829787234e-2,2.127659574468085e-2,4.25531914893617e-2,6.382978723404255e-2]]
15 *ContinuousGA> crossover 2 c1 c2
16 [[0.0,2.127659574468085e-2,0.1276595744680851,0.14893617021276595],
17 [8.51063829787234e-2,0.10638297872340426,4.25531914893617e-2,6.382978723404255e-2]]
18 *ContinuousGA> crossover 3 c1 c2
19 [[0.0,2.127659574468085e-2,4.25531914893617e-2,0.14893617021276595],
20 [8.51063829787234e-2,0.10638297872340426,0.1276595744680851,6.382978723404255e-2]]
21 *ContinuousGA> crossover 4 c1 c2
22 [[0.0,2.127659574468085e-2,4.25531914893617e-2,6.382978723404255e-2],
23 [8.51063829787234e-2,0.10638297872340426,0.1276595744680851,0.14893617021276595]]

We observe that for cp == 0, we just clone the parents, as also happens for cp greater than
4. Otherwise, for cp equal to 1, 2, or 3, the offspring is created by a crossover point after gene
number 1, 2, or 3, respectively.

1.12.2 The matePairwise function

There are many ways to choose which chromosomes should mate to create offspring, e.g., we
could randomly draw a mother and a father chromosome from a subpopulation consisting of
the numKeep best chromosomes in a population. Here, we simply use pairwise mating in a
recursive function called matePairwise, where chromosomes 1 and 2 mate, chromosomes
3 and 4 mate, and so forth. The resulting offspring is returned as a Population together
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with a StdGen, both in a tuple. The function requires several standard PRNGs. For this, we
add the split function that comes with the System.Random library in our import:

1 import System.Random (StdGen, randomR, split, mkStdGen)

The implementation of matePairwise is given below:
1 matePairwise :: StdGen -> Population -> (Population, StdGen)
2 matePairwise g [] = ([], g)
3 matePairwise g [ma] = ([ma], g)
4 matePairwise g (ma:pa:cs) = (offspring ++ fst (matePairwise g’ cs), g’’)
5 where (g’, g’’) = split g
6 (g’’’, _) = split g’’
7 cp = fst $ randIndex g’’’ ma
8 offspring = crossover cp ma pa

The two base cases say that an empty population should just return the empty list, and if the
population only have a single chromosome, we should just clone it. The general case generates
a random crossover point cp using the randIndex function and then calls the single point
crossover function with cp and the first two chromosomes in the population to create two
offspring. It then recursively repeats the process on the remainder of the population.

Example usage in ghci:
1 *ContinuousGA> let stringList =
2 ["abcd","efgh","ijkl","mnop","qrst","uvwx","yz12","3456"]
3 *ContinuousGA> let pop = encodeStringList stringList
4 *ContinuousGA> pop
5 [[0.0,2.127659574468085e-2,4.25531914893617e-2,6.382978723404255e-2],
6 [8.51063829787234e-2,0.10638297872340426,0.1276595744680851,0.14893617021276595],
7 [0.1702127659574468,0.19148936170212766,0.2127659574468085,0.23404255319148937],
8 [0.2553191489361702,0.2765957446808511,0.2978723404255319,0.3191489361702128],
9 [0.3404255319148936,0.3617021276595745,0.3829787234042553,0.40425531914893614],

10 [0.425531914893617,0.44680851063829785,0.46808510638297873,0.48936170212765956],
11 [0.5106382978723404,0.5319148936170213,0.574468085106383,0.5957446808510638],
12 [0.6170212765957447,0.6382978723404256,0.6595744680851063,0.6808510638297872]]
13 *ContinuousGA> let (newPop, g’) = matePairwise (mkStdGen 99) pop
14 *ContinuousGA> newPop
15 [[0.0,2.127659574468085e-2,4.25531914893617e-2,0.14893617021276595],
16 [8.51063829787234e-2,0.10638297872340426,0.1276595744680851,6.382978723404255e-2],
17 [0.2553191489361702,0.2765957446808511,0.2978723404255319,0.3191489361702128],
18 [0.1702127659574468,0.19148936170212766,0.2127659574468085,0.23404255319148937],
19 [0.3404255319148936,0.44680851063829785,0.46808510638297873,0.48936170212765956],
20 [0.425531914893617,0.3617021276595745,0.3829787234042553,0.40425531914893614],
21 [0.5106382978723404,0.5319148936170213,0.6595744680851063,0.6808510638297872],
22 [0.6170212765957447,0.6382978723404256,0.574468085106383,0.5957446808510638]]
23 *ContinuousGA> decodePopulation newPop
24 ["abch","efgd","mnop","ijkl","qvwx","urst","yz56","3412"

We observe that the crossover point for chromosomes 1 and 2 in pop was after the third gene;
for chromosomes 3 and 4 it was after the fourth gene (cloning); for chromosomes 5 and 6 it
was after the first gene; and for chromosomes 7 and 8 it was after the second gene.
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Note that if we do not want to allow cloning, we could limit the randIndex function to
always return a random index smaller than the lenght of the chromosome.

1.13 Mutation functions

Mutation involves changing a gene value to a new random value limited to glowand ghigh.
The fraction (mutation rate) of chromosomes in the population that should mutate is called
mutRate, and corresponds to the integer numMut. For example, for a population size of
numPop == 100 and a mutation rate of mutRate == 0.1, the number of chromosomes
to mutate would be numMut == 10.

The necessary mutation functions are given below.

1.13.1 The replaceAtIndex function

If we have a gene variable, or a list of genes (a chromosome), we cannot just change (over-
write) it as we likely would do in an imperative language, since data variables in a purely
functional language like Haskell are immutable (they cannot change once defined). Instead,
we must copy the data we need and put it together in a new data structure or variable. We
therefore implement a helper function that can replace an item in a list at a particular index,
namely the replaceAtIndex function below:

1 replaceAtIndex :: Int -> a -> [a] -> [a]
2 replaceAtIndex n item ls = as ++ (item:bs) where (as, (b:bs)) = splitAt n ls

This function uses the splitAt function available in Prelude (so no need to import it) to
split the list ls at the position n into two sublists as and (b:bs), where as are the first n
elements in ls, and (b:bs) are the remainding elements. The element b is then replaced
with item and the pieces are put together again using the ++ function.

Example usage in ghci:
1 *ContinuousGA> replaceAtIndex 5 99 [0,1,2,3,4,5,6,7,8,9]
2 [0,1,2,3,4,99,6,7,8,9]

1.13.2 The mutateChrom function

The mutateChrom function mutates a randomly selected gene among its list of genes:
1 mutateChrom :: StdGen -> Chromosome -> (Chromosome, StdGen)
2 mutateChrom g chrom = (mutChrom, g2’)
3 where (g1, g2) = split g
4 (nGene, g1’) = randIndex g1 chrom
5 (mutGene, g2’) = randGene g2
6 mutChrom = replaceAtIndex nGene mutGene chrom
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An index nGene in the chromosome chrom is picked randomly. A new mutated gene
mutGene at this index is then mutated using the randGene function. Finally, a new chro-
mosome mutChrom that is identical to chrom except that the gene at index nGene has been
mutated is returned.

Example usage in ghci:
1 *ContinuousGA> let s = "hello world!"
2 *ContinuousGA> let c = encodeString s
3 *ContinuousGA> let (cMut,g’) = mutateChrom (mkStdGen 99) c
4 *ContinuousGA> decodeChromosome cMut
5 "hello worldl"
6 *ContinuousGA> let (cMut,g’) = mutateChrom (mkStdGen 98) c
7 *ContinuousGA> decodeChromosome cMut
8 "hello/world!"

Using a PRNG obtained from mkdStdGen 99, the last gene is mutated, that is, a randomly
generated gene corresponding to the character ’l’ replaces the letter ’!’, whereas using a PRNG
obtained from mkdStdGen 98, the sixth gene is mutated, that is, a randomly generated gene
corresponding to the character ’/’ replaces the space character ’ ’.

1.13.3 The mutateChromInPop function

The function mutateChromInPop mutates a chromosome at index n in population pop:
1 mutateChromInPop :: StdGen -> Int -> Population -> (Population, StdGen)
2 mutateChromInPop g n pop = (replaceAtIndex n mutChrom pop, g’)
3 where (g’, g’’) = split g
4 (mutChrom, _) = mutateChrom g’’ (pop!!n)

1.13.4 The mutIndices and mutatePop functions

Finally, we need a function called mutatePop that given a list of indices, mutates all its
chromosomes at those indices.

To randomly generate a list of indices, we create a function mutIndices:
1 mutIndices :: Population -> StdGen -> [Int]
2 mutIndices pop g = take numMut $ randomRs (numElite, length pop - 1) g

The function makes use of the randomRs function from the System.Random library,
hence we add it to our import statement:

1 import System.Random (StdGen, randomR, randomRs, split, mkStdGen)

The randomRs function produces an infinite list of random indices limited to lower and
upper bounds given by it first argument. Here, the lower bound is numElite, because we
do not want to mutate any of the elite chromosomes, and the upper bound is the index of the
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last chromosome in the population. Finally, we take only the first numMut indices from the
infinite list.

Now that we have a a function to generate a list of random indices for the chromosomes that
shall be mutated, we can implement a recursive mutatePop function:

1 mutatePop :: StdGen -> [Int] -> Population -> (Population, StdGen)
2 mutatePop g _ [] = ([], g)
3 mutatePop g [] pop = (pop, g)
4 mutatePop g (n:ns) pop = mutatePop g’ ns pop’
5 where (pop’, g’) = mutateChromInPop g

The first base case says to do nothing if the population is empty or the list of indices is empty.
Given a list (n:ns) of indices, the recursive case uses the mutateChromInPop function
defined above to mutate the chromosome at index n in the population before it recursively
continues with the remaining ns indices. A list of random indices can be provided by the
mutIndices function.

Example usage in ghci:
1 *ContinuousGA> decodePopulation pop
2 ["abcd","efgh","ijkl","mnop","qrst","uvwx","yz12","3456"]
3 *ContinuousGA> numMut
4 4
5 *ContinuousGA> let mutIdx = mutIndices pop (mkStdGen 99)
6 *ContinuousGA> mutIdx
7 [7,5,6,3]
8 *ContinuousGA> let (mutPop, g’) = mutatePop (mkStdGen 99) mutIdx pop
9 *ContinuousGA> decodePopulation mutPop

10 ["abcd","efgh","ijkl","miop","qrst","u5wx","yz1c","o456"]

Because numMut == 4, four random chromosomes in pop are mutated. The indices of
these four chromosomes is determined by calling the mutIndices function, which returns
mutIdx = [7,5,6,3]. By comparing the mutated population mutPop with the original
population pop, we observe that for the chromosome at index 3, the second gene was mutated;
for the chromosome at index 5, the second gene was mutated; for the chromosome at index 6,
the fourth gene was mutated; and for the chromosome at index 7, the first gene was mutated.

1.14 Evolution functions

Our GA is almost finished but the most important step is left: evolution. We need two func-
tions, evolvePopOnce and evolvePop, to complete the GA.

1.14.1 The evolvePopOnce function

The evolvePopOnce function evolves a population from one generation to the next:
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1 evolvePopOnce :: StdGen -> Population -> (Population, StdGen)
2 evolvePopOnce g pop = (newPopMutated, g4)
3 where (g’, g’’) = split g
4 ePop = evalPop target pop
5 sPop = sortPop ePop
6 parents = toPopulation $ getParents sPop
7 (offspring, g3) = matePairwise g’ parents
8 newPop = parents ++ offspring
9 mutIdx = mutIndices newPop g3

10 (newPopMutated, g4) = mutatePop g’’ mutIdx newPop

Its input is a population pop and the output is a new population newPopMutated that has
been constructed through genetic operations. Each of the chromosomes in pop is evaluated
with respect to the target string target (hardcoded at the top of the module) and sorted
according to their associated cost. Parents to be kept for the next generation and for generating
offspring are selected using the getParents function, and to convert from a list of (cost,
chromosome) pairs, we use the toParents function. The result is assigned to parents.
The function matePairwise then create offspring using single point crossover on the
chromosomes in parents. The parents and the offspring collectively become the
new population newPop. Finally, a number numMut of the chromosomes in newPop are
mutated and the results is the next generation newPopMutated.

Here is an example usage in ghci for a target=s2 string, where s2="abc", and the
following GA settings:

1 numPop = 8 :: Int -- Population size (number of chromosomes)
2 xRate = 0.5 :: Double -- Selection rate
3 mutRate = 0.5 :: Double -- Mutation rate
4 numElite = 2 :: Int -- Number of elite chromosomes

1 *ContinuousGA> let stringList =
2 ["xxx","def","ghj","klm","nop","qrs","tuv","wxy"]
3 *ContinuousGA> let pop = encodeStringList stringList
4 *ContinuousGA> let (popEvolvedOnce,g’) = evolvePopOnce (mkStdGen 99) pop
5 *ContinuousGA> decodePopulation popEvolvedOnce
6 ["def","ghj","wum","nwp","9hj","gef","kop","nlm"]

1.14.2 The evolvePop function

Finally, we create the evolvePop function. This function evolves a population n times
recursively, making use of the evolvePopOnce function just described.

1 evolvePop :: StdGen -> Int -> Population -> (Population, StdGen)
2 evolvePop g 0 pop = (newpop, g)
3 where newpop = toPopulation $ sortPop $ evalPop target pop
4 evolvePop g n pop = evolvePop g’ (n-1) newPop
5 where (newPop, g’) = evolvePopOnce g pop

Example usage in ghci:
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1 *ContinuousGA> let (popEvolvedNTimes,g’) = evolvePop (mkStdGen 99) 10 pop
2 *ContinuousGA> decodePopulation popEvolvedNTimes
3 ["dcf","dcf","dcf","dcf","dc1","dc1","x_1","5cf"]
4 *ContinuousGA> let (popEvolvedNTimes,g’) = evolvePop (mkStdGen 99) 20 pop
5 *ContinuousGA> decodePopulation popEvolvedNTimes
6 ["dcf","dcf","dcf","dcf","dcf","d6z","d+f","ucf"]
7 *ContinuousGA> let (popEvolvedNTimes,g’) = evolvePop (mkStdGen 99) 100 pop
8 *ContinuousGA> decodePopulation popEvolvedNTimes
9 ["cbc","cbc","cbc","cbc","cbc","cbc","cb:","g2c"]

10 *ContinuousGA> let (popEvolvedNTimes,g’) = evolvePop (mkStdGen 99) 200 pop
11 *ContinuousGA> decodePopulation popEvolvedNTimes
12 ["abc","abc","abc","abc","ab.","apc","9bc",".bc"]

We observe that neither 10, 20, nor 100 generations were sufficient to find (learn) the target
string, whereas for 200 generations, the population evolved and the best chromosome was
identical to the target, decoded as "abc". The binary GA studied in the previous tutorial,
only needed 20 generations for the same GA settings.

1.15 Final remarks

Congratulations! You should now have a working GA contained in your ContinuousGA
module. Even if you are generous with comments and line shifts (as I am), your module
should be less than 300 lines.

What remains is to test the GA. We will investigate this in the next section.

2 Exercises

2.1 Testing

You should test that the continuous GA for string learning works properly on a set of test
strings. Create a test module called TestContinuousGA.hs to hold your code:

1 module TestContinuousGA where

The module should import the GA module:
1 import ContinuousGA

You should then implement a main function with the necessary steps to verify proper func-
tionality of the GA:

1 main :: IO ()
2 main = do

For example, you could do something like the following:
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1 -- select a target string
2 -- obtain a PRNG g
3 -- initialise a random population
4 -- print the decoded population (list of candidate strings)
5 -- evolve the population for itMax iterations
6 -- print the decoded evolved population (list of evolved strings)
7 -- print the decoded best chromosome found and its cost

To help you out, here is an example module implementing the steps listed above:
1 module TestContinuousGA where
2

3 import ContinuousGA
4 import System.Random (newStdGen)
5

6 main :: IO ()
7 main = do
8 g <- newStdGen
9 let (initPop, g’) = randPop g

10 putStr "Initial population decoded to strings:\n"
11 print $ decodePopulation initPop
12 let newPopEvolved = fst $ evolvePop g’ itMax initPop
13 putStr "Final population decoded to strings:\n"
14 print $ decodePopulation newPopEvolved
15 putStr "Target:\n"
16 print target
17 putStr "Best solution:\n"
18 print $ (decodePopulation newPopEvolved) !! 0
19 putStr "Cost of solution:\n"
20 print $ chromCost target (newPopEvolved !! 0)

Experiment with algorithm settings such as

• population size (number of chromosomes)

• maximum number of iterations

• selection rate

• mutation rate

and discuss how your choice of GA settings affect the following:

• ability to find the correct target string

• cost of the GA-generated string (zero for finding the correct string)

• number of iterations needed

• total runtime

for a number of different test strings, e.g.

• abc123.,;
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• descartes: cogito ergo sum

• 2+2 is: 4, 2*2 is: 4; why is _/not/_ 2.2*2.2 equal to 4.4?!

If you modify your cost functions or implement other cost functions, examine the performance
of the GA for each of these.

2.2 Solve your own problem

This exercise is about adapting the continuous GA to some other problem. Find a problem
that a continuous GA can solve. A suitable problem can be a combinatorial problem such as
string learning presented here, or the test functions given in the appendix of Haupt & Haupt
(2004). You will need to think about how to encode the chromosomes, e.g., the sequence of
genes could correspond to optimisation variables. You must also define new cost functions to
evaluate the chromosomes. Much of the existing code can be reused.

References
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