
Week 14: The travelling salesperson
problem (TSP)

Robin T. Bye

25th April 2017

Time Topic Reading
09.15 Overview and status update
09.30 Lecture: Introduction to TSP & alternative chromosome encoding (no slides)
10.15 Workshop/tutorial: The travelling salesperson problem (TSP) *

* Please read and follow the instructions given in the workshop documents before coming to
class!

Date for workshop: Tuesday 25 April

Data files for two TSPs:

• wi29info.txt

• wi29.txt

• dj38info.txt

• dj38.txt

This PDF document is available in an HTML version at http://www.hg.schaathun.
net/FPIA/week14.html.

Contents

1 Tutorial: GA for TSP 3
1.1 Test problems . 3
1.2 Test module . 4
1.3 A continuous GA for the TSP . 4
1.4 GA settings . 5

1

Week3/wi29info.txt
Week3/wi29.txt
Week3/dj38info.txt
Week3/dj38.txt
http://www.hg.schaathun.net/FPIA/week14.html
http://www.hg.schaathun.net/FPIA/week14.html

1.5 Genes, chromosomes, and population . 5
1.6 Encoding functions . 6

1.6.1 The encodeCity function . 6
1.6.2 Direct encoding using the encodeTour’ function 6
1.6.3 The inverseSequence function 7
1.6.4 The encodeTour function . 7
1.6.5 The encodeTours function . 7

1.7 Decoding functions . 8
1.7.1 The fromInverse function . 8

1.8 Testing the inverseSequence and fromInverse functions 9
1.8.1 The decodeGene function . 9
1.8.2 The decodeChromosome function 9
1.8.3 The decodePopulation function 9

1.9 Testing of encoding/decoding . 10
1.10 Randomness functions . 10

1.10.1 The randGene function . 10
1.10.2 The randGenes function . 10
1.10.3 The randChrom function . 11
1.10.4 The randChroms function . 11
1.10.5 The randPop function . 12
1.10.6 The randIndex function . 12

1.11 Cost functions . 12
1.11.1 The distance function . 12
1.11.2 The distanceTour function . 13
1.11.3 The cityIDToCity function . 13
1.11.4 The chromToTour function . 13
1.11.5 The popToTours function . 13
1.11.6 The chromCost function . 14
1.11.7 The chromCostPair function . 14

1.12 Population functions . 14
1.12.1 The evalPop function . 14
1.12.2 The sortPop function . 15
1.12.3 The selection function . 15
1.12.4 The getParents function . 15
1.12.5 The toPopulation function . 15

1.13 Mating functions . 16
1.13.1 The crossover function . 16
1.13.2 The matePairwise function . 16

1.14 Mutation functions . 17
1.14.1 The replaceAtIndex function 17
1.14.2 The mutateChrom function . 18
1.14.3 The mutateChromInPop function 18
1.14.4 The mutIndices and mutatePop functions 18

2

1.15 Evolution functions . 19
1.15.1 The evolvePopOnce function . 19
1.15.2 The evolvePop function . 20

1.16 Alternative encoding/decoding scheme . 20
1.17 Final remarks . 21

2 Exercises 21
2.1 Testing . 21

1 Tutorial: GA for TSP

In this tutorial, we will implement an integer-based GA for TSP based on the continuous
GA that we implemented previously. A lot of the continuous GA code can be reused as is
or just slightly modified. Therefore, this tutorial will necessarily contain much of the same
information as the tutorial on the continuous GA.

The purpose of this GA is solve problems that are formulated as TSPs. That is, given a set of
cities in the Euclidean 2D space, starting at any city, the GA should find the shortest connected
path visiting all cities exactly once before returning the original city. A chromosome should
represent a candidate solution, that is, a sample permutation (sequence of cities). We will
assume that n cities are labeled as natural numbers, 1, 2, . . . , n. For example, for n = 7 cities,
a candidate solution could be given by [4, 6, 2, 7, 3, 1, 5]. The cost function is the total distance
travelled when visiting the cities of such a permutation.

However, because a TSP tour cannot include repeated cities, ordinary crossover and mutation
will not work, because these genetic operations may introduce duplicates in offspring. There
are several ways to fix this problem. For example, we can write specialised crossover and
mutation methods that checks if duplicates will occur and avoids it (e.g., the PMX method).
Here, we will use the method from a paper by Üçoluk (2002), where a one-to-one relationship
between a permutation and its inverse is presented. The inverse is allowed to have duplicates.
Therefore, we can encode our chromosomes as the inverse of the permutations they represent,
and use our ordinary crossover and mutation methods as before. To evalute the total distance
travelled (cost), we must decode chromosomes to permutations and use a distance function on
the resulting permutation.

1.1 Test problems

We will implement a GA for TSP using the alternative chromosome encoding proposed in
Üçoluk (2002) and try to solve the following TSPs (taken from
www.math.uwaterloo.ca/tsp/world/countries.html):

• 29 cities in Western Sahara:

3

http://www.math.uwaterloo.ca/tsp/world/countries.html

– wi29info.txt: Information about problem and list of cities with (x,y) coordinates.

– wi29.txt Stripped file with list of cities with (x,y) coordinates only.

• 38 cities in Djibouti:

– dj38info.txt: Information about problem and list of cities with (x,y) coordinates.

– dj38.txt Stripped file with list of cities with (x,y) coordinates only.

For motivation, we will run an informal competition to see who manages to get the shortest
TSP distance..!

You should place both the stripped files in the same directory as your Haskell module.

1.2 Test module

To show how you can read in the test data, we first provide a test module that can be used later
when you have finished the implementation of your TSP GA:

1 module TestTSPGA where
2

3 import TSPGA
4 import Data.List (sort)
5 import System.Random (newStdGen)
6

7 main :: IO ()
8 main = do
9 contents <- readFile "wi29.txt"

10 let s = map words (lines contents)
11 let cities = map stringsToCity s

This test module makes use of a helper function:
1 stringsToCity :: [String] -> City
2 stringsToCity [c, x, y] = (read c, (read x, read y))

The function stringsToCity converts a list of three strings of the format [cityid,
xpos, ypos] to a City.

1.3 A continuous GA for the TSP

We begin by creating a module TSPGA.hs for our code:
1 module TSPGA where

4

Week3/wi29info.txt
Week3/wi29.txt
Week3/dj38info.txt
Week3/dj38.txt

1.4 GA settings

Before we proceed, it is useful to add some GA parameter settings to the top of our file so
that they can easily be found and tweaked when we will test the GA later. We adopt the
terminology used in class and in Haupt & Haupt (2004) and define the following parameters
with some default settings:

1 numPop = 100 :: Int -- Population size (number of chromosomes)
2 xRate = 0.5 :: Double -- Selection rate
3 mutRate = 0.5 :: Double -- Mutation rate
4 numElite = 20 :: Int -- Number of elite chromosomes
5 itMax = 500 :: Int -- Max number of iterations

Note that these settings may be good or bad, and you will likely need to experiment to obtain
good solutions.

1.5 Genes, chromosomes, and population

In the following, we will assume that a gene is an integer that encodes a single number in an
inverse sequence corresponding to a permutation, and that a chromosome is a list of genes that
encodes the complete sequence.

The total number of (encoding) variables, numVar, is equal to the number of cities in t test
problem we will try to solve:

1 numVar = 29 :: Int -- replace with length of a list of cities

This number tells us how many genes are required in each chromosome. Here, we have
hardcoded the number to suit the Djibouti problem with 29 cities, and you must change it to
38 if solving the Western Sahara problem.

Next, we need to know the number of chromosomes numKeep to keep between generations.
This number is a fraction (the selection rate xRate) of the population size numPop and
should be rounded up to the nearest even number to simplify the mating procedure:

1 numKeep | numKeep’’ > numPop = numPop - numPop ‘mod‘ 2
2 | numKeep’’ < 2 = 2
3 | otherwise = numKeep’’
4 where numKeep’’ = numKeep’ + numKeep’ ‘mod‘ 2
5 numKeep’ = ceiling $ xRate * fromIntegral numPop :: Int

For example, for numPop = 100 and xRate = 0.5, we get numKeep = 50. Some
cases are introduced for safety to ensure numKeep is always greater than or equal to 2, and
always smaller than or equal to numPop.

We also need to determine the number of chromosomes to mutate, numMut, which is a frac-
tion (the mutation rate mutRate) of the population size, and must be rounded up to nearest
integer:

5

1 numMut = ceiling $ mutRate * fromIntegral numPop :: Int

For numPop = 40 and mutRate = 0.1, we get numMut = 4.

Finally, we define some type aliases for readability and debugging purposes:
1 type CityID = Int -- city id
2 type Position = (Double, Double) -- city position (x, y)
3 type City = (CityID, Position) -- (city id, x-coordinate, y-coordinate)
4 type Gene = CityID -- integer
5 type Chromosome = [Gene] -- list of genes
6 type Population = [Chromosome] -- list of chromosomes

A CityID is an integer representing a city, whilst Position is a tuple consisting of the x
and y coordinates of a city in a Euclidean space. A City is a tuple consisting of a CityID
and the Position of that city. We simply let a Gene be a CityID, a Chromosome a list
of Gene, and a Population a list of Chromosome.

The variables (city IDs) are constrained as
1 pLo = 1 :: CityID
2 pHi = numVar :: CityID

whilst we let the genes have the same constraints.
1 gLo = pLo :: CityID
2 gHi = pHi :: CityID

The reason we have the same constraints on the genes is that the inverse sequence (an encoded
chromosome) of a permutation will contain only (some of) the same numbers as those of the
permutation. Note that if we planned to use some other encoding scheme, we would have to
change gLo and gHi accordingly.

1.6 Encoding functions

1.6.1 The encodeCity function

We need a function encodeCity to encode a City as a Gene:
1 encodeCity :: City -> Gene
2 encodeCity (cityID, cityPos) = cityID

1.6.2 Direct encoding using the encodeTour’ function

If we encode a TSP tour (list of cities) directly to a chromosome, we could use the function
encodeTour’:

6

1 encodeTour’ :: [City] -> Chromosome
2 encodeTour’ = map encodeCity

However, as we have discussed already, this would cause problems with repeated cities when
performing ordinary crossover and mutation.

1.6.3 The inverseSequence function

Instead, we implement a function inverseSequence that creates a sequence of numbers
representing a permutation:

1 -- Inverse sequence representing a permutation
2 -- This sequence allows repetitive values and hence is robust under ordinary
3 -- (n-point) crossover. There is a one-to-one mapping from ordinary permutation
4 -- representation to the inversion sequence representation.
5 -- Source: http://www.ceng.metu.edu.tr/~ucoluk/research/publications/tspnew.pdf
6 inverseSequence :: [CityID] -> [Int]
7 inverseSequence cs = inverseSequence’ cs ns
8 where ns = [1..length cs]
9

10 inverseSequence’ :: [CityID] -> [Int] -> [Int]
11 inverseSequence’ cs [j] = [length $ filter (> j) $ takeWhile (/= j) cs]
12 inverseSequence’ cs (j:js) = inverseSequence’ cs [j] ++ inverseSequence’ cs js

This sequence is allowed to have duplicates. Later, we implement a fromInverse function
to get back to a permutation from such an inverse sequence.

1.6.4 The encodeTour function

To encode a TSP tour (permuation of cities) as an inverse sequence in the chromosome,
we compose a function consisting of inverseSequence and the direct encoding function
encodeTour’:

1 -- Encode a tour (permutation of cities) as an inverse sequence
2 encodeTour :: [City] -> Chromosome
3 encodeTour = inverseSequence . encodeTour’

1.6.5 The encodeTours function

Finally, the encodeTours function encodes a list of tours as a list of inverse sequences:
1 encodeTours :: [[City]] -> Population
2 encodeTours = map encodeTour

7

1.7 Decoding functions

In addition to encoding functions, we also need decoding functions able to convert back from
inverse sequences contained in chromosomes back to TSP tours (permutations).

1.7.1 The fromInverse function

We define a fromInverse function that converts an inverse sequence to a permutation:
1 -- Convert inverse sequences generated with inverseSequence to permutations
2 -- Source: http://www.ceng.metu.edu.tr/~ucoluk/research/publications/tspnew.pdf
3 fromInverse :: [Int] -> [Int]
4 fromInverse inv = map snd $ filter ((>0) . fst) $ sort $ zip permpos [0..]
5 where permpos = updatePosMany inv0 pos0 i n
6 inv0 = 0 : inv
7 pos0 = take (length inv0 + 1) $ repeat 0
8 i = length inv
9 n = i

It is slightly hard work to implement the fromInverse function based on the second iter-
ative algorithm in Üçoluk (2002), and a number of helper functions are required (you may be
able to do this in a simpler way yourself):

1 -- Helper functions to fromInverse
2 updatePosMany :: [Int] -> [Int] -> Int -> Int -> [Int]
3 updatePosMany inv pos i n
4 | i < 1 = pos
5 | otherwise = updatePosMany inv (updatePos inv pos i n) (i - 1) n
6

7 updatePos :: [Int] -> [Int] -> Int -> Int -> [Int]
8 updatePos inv pos i n = updatePosi inv (updatePosmMany inv pos (i + 1) n i) i
9

10 updatePosi :: [Int] -> [Int] -> Int -> [Int]
11 updatePosi inv pos i = replaceAtIndex i (inv!!i + 1) pos
12

13 updatePosmMany :: [Int] -> [Int] -> Int -> Int -> Int -> [Int]
14 updatePosmMany inv pos m n i
15 | m == n = updatePosm inv pos m i
16 | m > n = updatePosmMany inv (updatePosm inv pos m i) (m - 1) n i
17 | otherwise = updatePosmMany inv (updatePosm inv pos m i) (m + 1) n i
18

19 updatePosm :: [Int] -> [Int] -> Int -> Int -> [Int]
20 updatePosm inv pos m i
21 | pos!!m >= inv!!i + 1 = replaceAtIndex m (pos!!m + 1) pos
22 | otherwise = pos

8

1.8 Testing the inverseSequence and fromInverse functions

We can test the inverseSequence and fromInverse functions on two permutations p1
and p2 with corresponding inverse sequences i1 and i2, respectively, given in Üçoluk (2002):

p1 = [5, 7, 1, 3, 6, 4, 2]↔ i1 = [1, 5, 2, 3, 0, 1, 0] (1)
p2 = [4, 6, 2, 7, 3, 1, 5]↔ i2 = [5, 2, 3, 0, 2, 0, 0] (2)

Example usage in ghci:
1 *TSPGA> let perm1 = [5,7,1,3,6,4,2]
2 *TSPGA> let perm2 = [4,6,2,7,3,1,5]
3 *TSPGA> let invseq1 = inverseSequence perm1
4 *TSPGA> let invseq2 = inverseSequence perm2
5 *TSPGA> invseq1
6 [2,5,2,3,0,1,0]
7 *TSPGA> invseq2
8 [5,2,3,0,2,0,0]
9 *TSPGA> let perm1’ = fromInverse invseq1

10 *TSPGA> let perm2’ = fromInverse invseq2
11 *TSPGA> perm1’
12 [5,7,1,3,6,4,2]
13 *TSPGA> perm2’
14 [4,6,2,7,3,1,5]

1.8.1 The decodeGene function

There is no way to decode a gene by itself, since a gene is a number in an inverse sequence in
which the elements depend on each other. We need to decode an entire chromosome to find
the permutation it represent; we cannot decode separate genes. Also, there is no need for a
decodeGene function. Hence, this function is not implemented.

1.8.2 The decodeChromosome function

To decode a Chromosome, we just call the fromInverse function:
1 decodeChromosome :: Chromosome -> [CityID]
2 decodeChromosome = fromInverse

1.8.3 The decodePopulation function

To decode an entire population (list of chromosomes) of chromosomes, we just map the
decodeChromosome function over the population:

1 decodePopulation :: Population -> [[CityID]]
2 decodePopulation = map decodeChromosome

9

1.9 Testing of encoding/decoding

Example functionality in ghci:
1 *TSPGA> let c1 = (1,(0,0)) :: City
2 *TSPGA> let c2 = (2,(1,1)) :: City
3 *TSPGA> let c3 = (3,(1,2)) :: City
4 *TSPGA> let c4 = (4,(2,1)) :: City
5 *TSPGA> let tour1 = [c1,c2,c3,c4]
6 *TSPGA> let tour2 = [c2,c3,c1,c4]
7 *TSPGA> let tour3 = [c3,c1,c2,c4]
8 *TSPGA> let tour4 = [c4,c1,c3,c2]
9 *TSPGA> let tours = [tour1,tour2,tour3,tour4]

10 *TSPGA> let pop = encodeTours tours
11 *TSPGA> pop
12 [[0,0,0,0],[2,0,0,0],[1,1,0,0],[1,2,1,0]]
13 *TSPGA> decodePopulation pop
14 [[1,2,3,4],[2,3,1,4],[3,1,2,4],[4,1,3,2]]

1.10 Randomness functions

Randomness is vital for a GA, e.g., to create a random initial population, a random crossover
point, a random mutation, and so on. We will use two functions from the System.Random
library to implement the functions we need for randomness, namely StdGen and randomR:

1 import System.Random (StdGen, randomR)

It will be convenient to have functions for generating random genes, chromosomes, and pop-
ulations; and also for generating a random index (e.g., a crossover point) in a list.

Note that the reason we also return a StdGen in many or most of the functions dealing with
randomness is so that we can repeatedly apply them, e.g., in a genetic evolution. In such cases,
we need to pass on a StdGen for the next function calls.

1.10.1 The randGene function

The randGene function generates a random number of type Gene in the range [glow, ghigh]:
1 randGene :: StdGen -> (Gene, StdGen)
2 randGene g = (value, g’)
3 where (value, g’) = randomR (gLo, gHi) g

1.10.2 The randGenes function

The randGenes function uses the randGene function to generate a list of random genes
with length n:

10

1 -- Create a list with n random genes
2 randGenes :: Int -> StdGen -> ([Gene], StdGen)
3 randGenes 0 g = ([], g)
4 randGenes n g =
5 let (value, g’) = randGene g
6 (restOfList, g’’) = randGenes (n-1) g’
7 in (value:restOfList, g’’)

For convenience, we also implement a version of this function, randGene’, that does not
return StdGen:

1 -- Create a list with n random genes, do not return StdGen
2 randGenes’ :: Int -> StdGen -> [Gene]
3 randGenes’ n g = take n $ randomRs (gLo, gHi) g

1.10.3 The randChrom function

The randChrom and randChrom’ functions are identical to randGenes and randGenes’,
respectively, except that they return a Chromosome instead of a list of genes [Gene]:

1 -- Random chromosome with n genes
2 randChrom :: Int -> StdGen -> (Chromosome, StdGen)
3 randChrom n g = randGenes n g
4

5 -- Random chromosome with n genes, do not return StdGen
6 randChrom’ :: Int -> StdGen -> Chromosome
7 randChrom’ n g = randGenes’ n g

1.10.4 The randChroms function

The randChroms function uses the randChrom function to generate a list of cn random
chromosomes, each with length gn:

1 -- Create a list with cn random chromosomes with gn genes
2 randChroms :: Int -> Int -> StdGen -> (Population, StdGen)
3 randChroms 0 _ g = ([], g)
4 randChroms cn gn g =
5 let (value, g’) = randChrom gn g
6 (restOfList, g’’) = randChroms (cn-1) gn g’
7 in (value:restOfList, g’’)

Again, we can also define a randChrom’ function that does the same thing as randChrom
but does not return at StdGen:

1 randChroms’ :: Int -> Int -> StdGen -> Population
2 randChroms’ cn gn g = chunksOf gn values
3 where values = randGenes’ (cn * gn) g

This function requires the use of the function chunksOf in the Data.List.Split library:

11

1 import Data.List.Split (chunksOf)

That is, we first generate a large list of cn × gn genes, and then we split that list into a list of
sublists, each of length gn.

1.10.5 The randPop function

The randPop function is just a special case of the randChroms function that generates a
list of cn = numPop random chromosomes, each with gn = numVar genes:

1 -- Random population with numPop chromosomes with numVar genes
2 randPop :: StdGen -> (Population, StdGen)
3 randPop = randChroms numPop numVar

And again, we can also define a randPop’ function that does not return a StdGen if we
want to:

1 -- Random population with numPop chromosomes with numVar genes,
2 -- do not return StdGen
3 randPop’ :: StdGen -> Population
4 randPop’ = randChroms’ numPop numVar

1.10.6 The randIndex function

Finally, the randIndex function returns a random index of a list xs of length n in the closed
interval [0, n− 1]:

1 -- Random index in a chromosome
2 randIndex :: StdGen -> [a] -> (Int, StdGen)
3 randIndex g xs = (ind, g’)
4 where (ind, g’) = randomR (0, length xs - 1) g

1.11 Cost functions

Before we proceed with implementing the core of the GA, namely operations such as selection,
mating, mutation, and evolution, we need functions to evaluate the cost of chromosomes.

1.11.1 The distance function

We begin with the distance function, which calculates the Euclidean distance between two
cities in Euclidean 2D space:

1 distance :: City -> City -> Double
2 distance (c1, (x1, y1)) (c2, (x2, y2)) = sqrt $ (x2 - x1)^2 + (y2 - y1)^2

12

1.11.2 The distanceTour function

The distanceTour function calculates the total distance of a TSP tour. We first connect
the end city back to the starting city, and then use a helper function distanceTour’ that
adds up all the intercity distances:

1 -- Distance of a TSP tour
2 distanceTour :: [City] -> Double
3 distanceTour cs = distanceTour’ cs’
4 where cs’ = cs ++ [head cs]
5

6 -- Distance of a tour where the end city is not connected back to the beginning
7 distanceTour’ :: [City] -> Double
8 distanceTour’ [] = 0
9 distanceTour’ [c1,c2] = distance c1 c2

10 distanceTour’ (c1:c2:cs) = distance c1 c2 + distanceTour’ (c2:cs)

1.11.3 The cityIDToCity function

The cityIDToCity function looks up a CityID in a list of cities [City] and returns the city if it
exists, otherwise it returns an error:

1 cityIDToCity :: [City] -> CityID -> City
2 cityIDToCity cities cityID = (cityID, stripMaybe cityPos)
3 where cityPos = lookup (cityID) cities
4 stripMaybe (Just cityPos) = cityPos
5 stripMaybe (Nothing) = error $ "City does not exist!"

1.11.4 The chromToTour function

The chromToTour function uses the cityIDToCity function to look up each of the cities
in a decoded chromosome to find the TSP tour (list of cities) that the chromosome corresponds
to:

1 chromToTours :: [City] -> Chromosome -> [City]
2 chromToTours cities = map (cityIDToCity cities) . decodeChromosome

1.11.5 The popToTours function

The popToTours function maps the chromToTour function over each of the chromo-
somes in a population to construct a list of TSP tours:

1 popToTours :: [City] -> Population -> [[City]]
2 popToTours cities = map (chromToTours cities)

13

1.11.6 The chromCost function

We are now ready to find the cost of a chromosome, which is the total distance of the TSP tour
that the chromosome encodes:

1 chromCost :: [City] -> Chromosome -> Double
2 chromCost cities = distanceTour . chromToTours cities

1.11.7 The chromCostPair function

As we shall see later, it is convenient to store the evaluated cost of a chromosome together
with the chromosome itself in a tuple. For example, if we have a population of such tuples,
we can sort it in increasing order of cost (ranking), which is necessary for selection, where we
typically want to select better chromosomes before worse ones.

We therefore define a new type
1 type ChromCost = (Double, Chromosome)

Next, we define a chromCostPair function to construct such tuples from a list of cities and
the chromosome we want to evaluate:

1 chromCostPair :: [City] -> Chromosome -> ChromCost
2 chromCostPair cities c = (chromCost cities c, c)

1.12 Population functions

We now turn our attention to some functions dealing with an entire population of chromo-
somes. The functions below are used to evaluate the cost of each chromosome in a pop-
ulation (evalPop); to sort a population in increasing order of cost (sortPop); to select
chromosomes apart from elite chromosomes to keep for next generation and to use for mating
(selection); get a list of chromosomes to be used as parents for mating (getParents);
and to convert a list of (cost, chromosome) pairs, [ChromCost], to type Population.

1.12.1 The evalPop function

The evalPop function evaluates all of the chromosomes in a population by mapping the
partial function chromCostPair cities over the population, where cities is a list
of all the cities for the TSP and their Position. This is an example of partial function
application, where we call a function with too few parameters and get back a partially applied
function, that is, a function that takes as many parameters as we left out.

1 evalPop :: [City] -> Population -> [ChromCost]
2 evalPop cities = map (chromCostPair cities)

14

1.12.2 The sortPop function

To sort a population, we can use the sort function from the Data.List library. We there-
fore add sort to our import statement:

1 import Data.List (elemIndex, sort)

The sortPop function is then implemented simply as
1 sortPop :: [ChromCost] -> [ChromCost]
2 sortPop = sort

Note that this works because when given a list of tuples (ChromCost is a (cost, chromosome)
pair, or tuple), sort sorts the list by the first element of the tuples, namely the cost.

Of course, we could have used sort directly, however, implementing sortPop ensures
correct types so it adds some safety to our code.

1.12.3 The selection function

In addition to numElite elite chromosomes, a number of other chromosomes must be kept
in the population for the next generation and also serve the role as parents for mating. There
are several ways to select such chromosomes, including roulette wheel selection, tournament
selection, random selection, etc. Here, we just take a fraction xRate (called the selection
rate) of a sorted (ranked) population. The total number of elite chromosomes plus selected
chromosomes should equal numKeep. A possible implementation of a selection function
is given below:

1 selection :: [ChromCost] -> [ChromCost]
2 selection = take (numKeep - numElite) . drop numElite

1.12.4 The getParents function

The getParents function returns the chromosomes to keep in the population for the next
generation and to serve as parents. These chromosomes consists of the numElite best chro-
mosomes in the population plus some chromosomes that are selected using the selection
function above.

1 getParents :: [ChromCost] -> [ChromCost]
2 getParents pop = (take numElite pop) ++ selection pop

1.12.5 The toPopulation function

For some of the genetic operations dealing with the population, it may be convenient not to
have to handle a list of (cost, chromosome) pairs but just a list of chromosomes. We there-

15

fore define a function toPopulation to perform a conversion of a list of ChromCost to
Population:

1 toPopulation :: [ChromCost] -> Population
2 toPopulation [] = []
3 toPopulation ((cost,chrom) : pop) = chrom : toPopulation pop

1.13 Mating functions

We are finally ready to begin implementing the core components of the GA, namely mating,
mutation, and evolution. We begin with two function required for mating, the single point
crossover function and the matePairwise function.

Note that because we are using inverse sequences for our encoded chromosomes, we can use
the ordinary single-point crossover function and the mutation function defined previously for
the continuous GA.

1.13.1 The crossover function

The function crossover is used for mating with single point crossover:
1 crossover :: Int -> Chromosome -> Chromosome -> Population
2 crossover cp ma pa = [take cp ma ++ drop cp pa, take cp pa ++ drop cp ma]

Given a crossover point cp, a mother chromosome ma, and a father chromosome pa, it returns
two offspring, where one consists of the genes in ma and pa before and after cp, respectively,
and the other consists of the remaining genes from ma and pa.

1.13.2 The matePairwise function

There are many ways to choose which chromosomes should mate to create offspring, e.g., we
could randomly draw a mother and a father chromosome from a subpopulation consisting of
the numKeep best chromosomes in a population. Here, we simply use pairwise mating in a
recursive function called matePairwise, where chromosomes 1 and 2 mate, chromosomes
3 and 4 mate, and so forth. The resulting offspring is returned as a Population together
with a StdGen, both in a tuple. The function requires several standard PRNGs. For this, we
add the split function that comes with the System.Random library in our import:

1 import System.Random (StdGen, randomR, split, mkStdGen)

The implementation of matePairwise is given below:
1 matePairwise :: StdGen -> Population -> (Population, StdGen)
2 matePairwise g [] = ([], g)
3 matePairwise g [ma] = ([ma], g)

16

4 matePairwise g (ma:pa:cs) = (offspring ++ fst (matePairwise g’ cs), g’’)
5 where (g’, g’’) = split g
6 (g’’’, _) = split g’’
7 cp = fst $ randIndex g’’’ ma
8 offspring = crossover cp ma pa

The two base cases say that an empty population should just return the empty list, and if the
population only have a single chromosome, we should just clone it. The general case generates
a random crossover point cp using the randIndex function and then calls the single point
crossover function with cp and the first two chromosomes in the population to create two
offspring. It then recursively repeats the process on the remainder of the population.

1.14 Mutation functions

Mutation involves changing a gene value to a new random value limited to glow and ghigh.
The fraction (mutation rate) of chromosomes in the population that should mutate is called
mutRate, and corresponds to the integer numMut. For example, for a population size of
numPop == 100 and a mutation rate of mutRate == 0.1, the number of chromosomes
to mutate would be numMut == 10.

The necessary mutation functions are given below.

1.14.1 The replaceAtIndex function

If we have a gene variable, or a list of genes (a chromosome), we cannot just change (over-
write) it as we likely would do in an imperative language, since data variables in a purely
functional language like Haskell are immutable (they cannot change once defined). Instead,
we must copy the data we need and put it together in a new data structure or variable. We
therefore implement a helper function that can replace an item in a list at a particular index,
namely the replaceAtIndex function below:

1 replaceAtIndex :: Int -> a -> [a] -> [a]
2 replaceAtIndex n item ls = as ++ (item:bs) where (as, (b:bs)) = splitAt n ls

This function uses the splitAt function available in Prelude (so no need to import it) to
split the list ls at the position n into two sublists as and (b:bs), where as are the first n
elements in ls, and (b:bs) are the remainding elements. The element b is then replaced
with item and the pieces are put together again using the ++ function.

Example usage in ghci:
1 *ContinuousGA> replaceAtIndex 5 99 [0,1,2,3,4,5,6,7,8,9]
2 [0,1,2,3,4,99,6,7,8,9]

17

1.14.2 The mutateChrom function

The mutateChrom function mutates a randomly selected gene among its list of genes:
1 mutateChrom :: StdGen -> Chromosome -> (Chromosome, StdGen)
2 mutateChrom g chrom = (mutChrom, g2’)
3 where (g1, g2) = split g
4 (nGene, g1’) = randIndex g1 chrom
5 (mutGene, g2’) = randGene g2
6 mutChrom = replaceAtIndex nGene mutGene chrom

An index nGene in the chromosome chrom is picked randomly. A new mutated gene
mutGene at this index is then mutated using the randGene function. Finally, a new chro-
mosome mutChrom that is identical to chrom except that the gene at index nGene has been
mutated is returned.

1.14.3 The mutateChromInPop function

The function mutateChromInPop mutates a chromosome at index n in population pop:
1 mutateChromInPop :: StdGen -> Int -> Population -> (Population, StdGen)
2 mutateChromInPop g n pop = (replaceAtIndex n mutChrom pop, g’)
3 where (g’, g’’) = split g
4 (mutChrom, _) = mutateChrom g’’ (pop!!n)

1.14.4 The mutIndices and mutatePop functions

Finally, we need a function called mutatePop that given a list of indices, mutates all its
chromosomes at those indices.

To randomly generate a list of indices, we create a function mutIndices:
1 mutIndices :: Population -> StdGen -> [Int]
2 mutIndices pop g = take numMut $ randomRs (numElite, length pop - 1) g

The function makes use of the randomRs function from the System.Random library,
hence we add it to our import statement:

1 import System.Random (StdGen, randomR, randomRs, split, mkStdGen)

The randomRs function produces an infinite list of random indices limited to lower and
upper bounds given by it first argument. Here, the lower bound is numElite, because we
do not want to mutate any of the elite chromosomes, and the upper bound is the index of the
last chromosome in the population. Finally, we take only the first numMut indices from the
infinite list.

Now that we have a a function to generate a list of random indices for the chromosomes that
shall be mutated, we can implement a recursive mutatePop function:

18

1 mutatePop :: StdGen -> [Int] -> Population -> (Population, StdGen)
2 mutatePop g _ [] = ([], g)
3 mutatePop g [] pop = (pop, g)
4 mutatePop g (n:ns) pop = mutatePop g’ ns pop’
5 where (pop’, g’) = mutateChromInPop g n pop

The first base case says to do nothing if the population is empty or the list of indices is empty.
Given a list (n:ns) of indices, the recursive case uses the mutateChromInPop function
defined above to mutate the chromosome at index n in the population before it recursively
continues with the remaining ns indices. A list of random indices can be provided by the
mutIndices function.

1.15 Evolution functions

Our GA is almost finished but the most important step is left: evolution. We need two func-
tions, evolvePopOnce and evolvePop, to complete the GA.

1.15.1 The evolvePopOnce function

The evolvePopOnce function evolves a population from one generation to the next:
1 evolvePopOnce :: StdGen -> [City] -> Population -> (Population, StdGen)
2 evolvePopOnce g cities pop = (newPopMutated, g4)
3 where (g’, g’’) = split g
4 parents = toPopulation $ getParents $ sortPop $ evalPop cities pop
5 (offspring, g3) = matePairwise g’ parents
6 newPop = parents ++ offspring
7 mutIdx = mutIndices newPop g3
8 (newPopMutated, g4) = mutatePop g’’ mutIdx newPop

Its input is a list of cities and their positions named cities and a population pop, and
the output is a new population newPopMutated that has been constructed through genetic
operations. Each of the chromosomes in pop is evaluated by finding the total distance of the
TSP tour they each encode, and then sorted.

Parents to be kept for the next generation and for generating offspring are selected using the
getParents function, and to convert from a list of (cost, chromosome) pairs, we use the
toParents function. The result is assigned to parents. The function matePairwise
then create offspring using single point crossover on the chromosomes in parents. The
parents and the offspring collectively become the new population newPop. Finally,
a number numMut of the chromosomes in newPop are mutated and the results is the next
generation newPopMutated.

19

1.15.2 The evolvePop function

Finally, we create the evolvePop function. This function evolves a population n times
recursively, making use of the evolvePopOnce function just described.

1 evolvePop :: StdGen -> Int -> [City] -> Population -> (Population, StdGen)
2 evolvePop g 0 cities pop = (newpop, g)
3 where newpop = toPopulation $ sortPop $ evalPop cities pop
4 evolvePop g n cities pop = evolvePop g’ (n-1) cities newPop
5 where (newPop, g’) = evolvePopOnce g cities pop

1.16 Alternative encoding/decoding scheme

As pointed out by student Rune Valle (thank you!), an alternative encoding/decoding scheme
for TSP problems can be found here: frcatel.fri.uniza.sk/users/pesko/publ/DeTSP.pdf

Please feel free to use this scheme if you like.

Below is a module with the necessary code:
1 -- Alternative encoding/decoding scheme for TSP taken from
2 -- https://frcatel.fri.uniza.sk/users/pesko/publ/DeTSP.pdf
3

4 module GAtsmLehman where
5

6 -- Test data
7 perm1, perm2, invseq1, invseq2 :: [Int]
8 perm1 = [5,7,1,3,6,4,2]
9 perm2 = [4,6,2,7,3,1,5]

10 invseq1 = [1,5,2,3,0,1,0]
11 invseq2 = [5,2,3,0,2,0,0]
12

13 type Permutation = [Int]
14 type Lehman = [Int]
15

16 encodePermutation :: Permutation -> Lehman
17 encodePermutation [] = []
18 encodePermutation (ah:at) = (length $ filter (<ah) at):(encodePermutation at)
19

20 popItem :: Int -> [a] -> (a, [a])
21 popItem 0 (ah:at) = (ah, at)
22 popItem i (ah:at) = (output, ah:list)
23 where
24 (output, list) = popItem (i-1) at
25

26 identityPermutation :: Int -> Permutation
27 identityPermutation a = [1..a]
28

29 decodePermutation :: Lehman -> Permutation
30 decodePermutation a = decodePermutation’ (identityPermutation (length a)) a
31 where

20

http://frcatel.fri.uniza.sk/users/pesko/publ/DeTSP.pdf

32 decodePermutation’ :: Permutation -> Lehman -> Permutation
33 decodePermutation’ [] [] = []
34 decodePermutation’ n (lh:lt) = res:(decodePermutation’ nrest lt)
35 where
36 (res, nrest) = popItem lh n

1.17 Final remarks

Congratulations! You should now have a working GA contained in your TSPGAmodule. Even
if you are generous with comments and line shifts (as I am), your module should be around
300 lines.

What remains is to test the GA. We will investigate this in the next section.

2 Exercises

2.1 Testing

You should test that the TSP GA works properly on a set of TSP data such as wi29.txt and
dj38.txt. Create a test module called TestTSPGA.hs to hold your code:

1 module TestTSPGA where

The module should import the TSPGA module:
1 import TSPGA

You should then implement a main function with the necessary steps to verify proper func-
tionality of the GA:

1 main :: IO ()
2 main = do

For example, you could do something like the following:
1 -- read in TSP test data and obtain a list cities with positions
2 -- obtain a PRNG g
3 -- initialise a random population
4 -- print the decoded population (list of candidate tours)
5 -- evolve the population for itMax iterations
6 -- print the decoded evolved population (list of evolved tours)
7 -- print the decoded best chromosome found and its cost,
8 -- that is, the tour and its distance
9 -- compare the distance of the tour with the optimal distance

10 -- check that the solution is valid

To help you out, here is an example module implementing the steps listed above:

21

1 main :: IO ()
2 main = do
3 contents <- readFile "wi29.txt"
4 let s = map words (lines contents)
5 let cities = map stringsToCity s
6 g <- newStdGen
7 let (initPop, g’) = randPop g
8 putStr "Initial population decoded to cities:\n"
9 print $ decodePopulation initPop

10 let newPopEvolved = fst $ evolvePop g’ itMax cities initPop
11 putStr "newPopEvolved:\n"
12 print newPopEvolved
13 putStr "Valid tours using encoded chromosomes:\n"
14 print $ map validTour newPopEvolved
15 putStr "Final population decoded to cities:\n"
16 print $ decodePopulation newPopEvolved
17 putStr "Valid tours using decoded chromosomes:\n"
18 print $ map validTour (decodePopulation newPopEvolved)
19 let bestSolution = (decodePopulation newPopEvolved) !! 0
20 putStr "Best solution:\n"
21 print bestSolution
22 putStr "Cost of solution:\n"
23 print $ chromCost cities (newPopEvolved !! 0)
24 let bestTour = chromToTour cities (newPopEvolved !! 0)
25 putStr "Best solution as a list of cities with positions:\n"
26 print bestTour
27 putStr "Length of tour:\n"
28 print $ distanceTour bestTour
29 putStr "Length of optimal tour: \n"
30 putStrLn "27603 (wi29) and 6656 (dj38)"
31 putStrLn " Deviation from optimal:"
32 let deviation = ((distanceTour bestTour) - 27603) / 27603
33 print deviation -- for wi29
34 putStr "Valid solution:\n"
35 print $ validTour’ bestSolution (length cities)
36

37 stringsToCity :: [String] -> City
38 stringsToCity [c, x, y] = (read c, (read x, read y))
39

40 validTour :: [CityID] -> Bool
41 validTour tour = [1..length tour] == sort tour
42

43 validTour’ :: [CityID] -> Int -> Bool
44 validTour’ tour n = [1..n] == sort tour

Experiment with algorithm settings such as

• population size (number of chromosomes)

• maximum number of iterations

• selection rate

22

• mutation rate

and discuss how your choice of GA settings affect the following:

• ability to find a optimal TSP tour

• cost (distance) of the GA-generated tour (deviation from optimal)

• number of iterations needed

• total runtime

for the two TSP problems wi29.txt and dj38.txt.

References
Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithms. Wiley, 2nd ed.

Üçoluk, G. (2002). Genetic algorithm solution of the TSP avoiding special crossover and
mutation. Intelligent Automation & Soft Computing, 8(3), 265–272.

23

	Tutorial: GA for TSP
	Test problems
	Test module
	A continuous GA for the TSP
	GA settings
	Genes, chromosomes, and population
	Encoding functions
	The encodeCity function
	Direct encoding using the encodeTour' function
	The inverseSequence function
	The encodeTour function
	The encodeTours function

	Decoding functions
	The fromInverse function

	Testing the inverseSequence and fromInverse functions
	The decodeGene function
	The decodeChromosome function
	The decodePopulation function

	Testing of encoding/decoding
	Randomness functions
	The randGene function
	The randGenes function
	The randChrom function
	The randChroms function
	The randPop function
	The randIndex function

	Cost functions
	The distance function
	The distanceTour function
	The cityIDToCity function
	The chromToTour function
	The popToTours function
	The chromCost function
	The chromCostPair function

	Population functions
	The evalPop function
	The sortPop function
	The selection function
	The getParents function
	The toPopulation function

	Mating functions
	The crossover function
	The matePairwise function

	Mutation functions
	The replaceAtIndex function
	The mutateChrom function
	The mutateChromInPop function
	The mutIndices and mutatePop functions

	Evolution functions
	The evolvePopOnce function
	The evolvePop function

	Alternative encoding/decoding scheme
	Final remarks

	Exercises
	Testing

