
hials

Recursion and problem solving
Functional Programming in Haskell

Prof Hans Georg Schaathun

Høgskolen i Ålesund

February 2, 2015

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 1 / 1

hials

Motivation

Outline

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 2 / 1

hials

Motivation

Problem Solving

How do you eat an elephant?

1 Take one small piece and eat it.
2 If there is more elepant left, then repeat from start.

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 3 / 1

hials

Motivation

Problem Solving

How do you eat an elephant?

1 Take one small piece and eat it.
2 If there is more elepant left, then repeat from start.

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 3 / 1

hials

Motivation

Functional Programming

How do you write a functional program?

1 Write one small, useful function.
2 If your last function does not complete the program, then repeat

from start.

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 4 / 1

hials

Motivation

Functional Programming

How do you write a functional program?

1 Write one small, useful function.
2 If your last function does not complete the program, then repeat

from start.

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 4 / 1

hials

Defining functions

Outline

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 5 / 1

hials

Defining functions

Simple functions

Functions can be exceedingly simple
addTwo :: Integer -> Integer
addTwo a = a + 2

Functions can have several arguments
polynomial :: Double -> Double -> Double
polynomial a b = 2*aˆ2 + 3*bˆ2 + a*b + a + 10*b -
50

Functions may be exceedingly messy
Functions should be simple and comprehensible
Ten simple functions is better than one incomprehensible one

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 6 / 1

hials

Defining functions

Pattern Matching
A simple case

Function evaluation using pattern matching
matching actual arguments in the function call
... against formal arguments in the function definition

For instance
Definition: mul a b = a*b
Call: mul 5 10

1 a← 5
2 b ← 10

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 7 / 1

hials

Defining functions

Patterns with Constanst
More Pattern Matching

Formal arguments need not be simple symbols
funny 0 b = -b
funny a 0 = aˆ2
funny a b = b*a

The call funny 5 10 uses the third defintion
First definition invalid, because 5 does not match 0
Second definition invalid, because 10 does not match 0
a← 5, b ← 10 is OK

The first valid pattern is used
A common example

myXOR False x = x
myXOR True x = not x

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 8 / 1

hials

Defining functions

Guards

Pattern matching allows definition of multiple cases
not all case handling can be done with patterns

myAbs a | a < 0 = -a

myAbs a | a > 0 = a

myAbs a | otherwise = 0
|a| =


−a, a < 0,
a, a > 0,
0, otherwise

The first guard which evaluates to true is used.
otherwise is an alias for True

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 9 / 1

hials

Defining functions

Combining Guards in one Definition

Usually we combine all guard in one definition

myAbs a | a < 0 = -a
| a > 0 = a
| otherwise = 0 |a| =


−a, a < 0,
a, a > 0,
0, otherwise

Note the indentation of the guard lines (Lines 2–3)
this is necessary to let Haskell know that it is part of the same
definitions as Line 1.

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 10 / 1

hials

Defining functions

Local definitions
The where clause

Auxiliary definitions are often seen in mathematics

f (x) = cos y + sin y , where (1)

y = x2. (2)

Local definitions in Haskell follow the same pattern
f x = cos y + sin y

where y = x^2

Local definitions can only be used in the definition where they
appear
The linebreak is optional, and can be placed elsewhere

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 11 / 1

hials

Defining functions

Function types
Partial application

Functions of several parameters
myAdd :: Double -> Double -> Double

Why do we use arrows twice?
Actually, myAdd takes one Double

returns a function of type Double -> Double
... which in turn takes a second double to return the third double

Partial application is possible
myAdd 3 is a function Double -> Double

*Main> :type myAdd 3
myAdd 3 :: Double -> Double

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 12 / 1

hials

Defining functions

Function types
Partial application

Functions of several parameters
myAdd :: Double -> Double -> Double

Why do we use arrows twice?
Actually, myAdd takes one Double

returns a function of type Double -> Double
... which in turn takes a second double to return the third double

Partial application is possible
myAdd 3 is a function Double -> Double

*Main> :type myAdd 3
myAdd 3 :: Double -> Double

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 12 / 1

hials

Defining functions

Function types
Partial application

Functions of several parameters
myAdd :: Double -> Double -> Double

Why do we use arrows twice?
Actually, myAdd takes one Double

returns a function of type Double -> Double
... which in turn takes a second double to return the third double

Partial application is possible
myAdd 3 is a function Double -> Double

*Main> :type myAdd 3
myAdd 3 :: Double -> Double

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 12 / 1

hials

Modularisation

Outline

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 13 / 1

hials

Modularisation

Modularation

Problems are always solved in parts
A module is a part solution

functional programs: functions
OO programming: classes (object types)
mathematical arguments:

1 quantities
2 functions
3 concepts

Each module must be easy to understand
intuitive purpose
comprehensible definition

Modules may be defined in terms of other modules

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 14 / 1

hials

Modularisation

Functional programming

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 15 / 1

hials

Recursion

Outline

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 16 / 1

hials

Recursion

Recursion

Many functions are defined in terms of themselves
Fibonacci sequence

f0 = 1
f1 = 1
fi = fi−1 + fi−2 when i ≥ 2

This is called recurrence

f 0 = 1
f 1 = 1
f n = f (n-1) + f (n-2)

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 17 / 1

hials

Recursion

The Bisection Method

Solve an equation 0 = f (x)
Linear and quadratic equations are simple
For many other equations we need numeric solutions
The bisection method is one of the simplest
Requires a known interval (l ,u) to search for a solution

f (l) · f (u) < 0

If u − l is very small, then either u or l is an approximate solution

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 18 / 1

hials

Recursion

The Bisection Method
The algorithm

If u − l is very small,
then either u or l is an approximate solution

If u − l is not small enough,
find m = (u + l)/2
is the root in (l ,m) or in (m,u)?
repeat recursively on half the interval

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 19 / 1

hials

Summary

Outline

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 20 / 1

hials

Summary

Summary

Split a problem into smaller pieces
standard approach to problem solving

When the subproblem is simple enough, write a function
Combine simple functions to solve larger problems
Often functions can call themselves recursivly

standard way to define functions in any paradigm
necessary way to get iteration in functional programming
common way to define mathematical functions

Prof Hans Georg Schaathun Recursion and problem solving February 2, 2015 21 / 1

