Testing and Error Estimation

Machine Learning

Prof Hans Georg Schaathun

Høgskolen i Ålesund

February 2, 2015

Motivation

- The perceptron
 - our first learning classifier
 - linear classifier
 - implmentation; reads data from file
- Data set
 - breast cancer data from Wisconsin
 - 2 two classes: benign and malign
- Does the classifier work?
 - How do we test it?

Outline

- Error Estimation
- Statistical Estimation
- Evaluation Heuristic
- 4 Summary

What do we measure?

- Evaluation heuristic
- How do we measure classifier quality?

Testing data

Step 1

To test, we need data

- Split the data set into two parts
 - $\mathbf{0}$ n_1 rows for training
 - 2 n₂ rows for testing
- Make sure either set is representative
 - How?

Error Rate

- Count
 - e error events
 - 2 e correct classifications
- 2 Calculate error rate: $\frac{e}{e+c}$

Outline

- Error Estimation
- Statistical Estimation
- Evaluation Heuristic
- 4 Summary

Error probability

- What is the probability of an error?
 - when recall is used
 - on a random object in the wild?

Point estimation

- Parameter: error probability p_e
- Estimator: error rate \hat{p}_e (stochastic variable)
- Estimate: observation of the estimator r_e (error rate)

Interval estimation

- Upper and lower estimator (*I*, *u*)
- p% confidence interval
- p% probability that $p_e \in (I, u)$

Outline

- Error Estimation
- Statistical Estimation
- Evaluation Heuristic
- 4 Summary

Confusion Matrix

		Prediction	
		Malign	Benign
Actual	Malign	True	False
		Positive	Negative
Class	Benign	False	True
		Positive	Negative

- We can count separate error rates for
 - false positives
 - false negatives
- and estimate separate error probabilities

Confusion Matrix

		Prediction	
		Malign	Benign
	Malign	True	False
Actual Class		Positive	Negative
	Benign	False	True
		Positive	Negative

- We can count separate error rates for
 - false positives
 - false negatives
- and estimate separate error probabilities

Variable threshold

- We can vary w_0
- Receiver operating characteristic (ROC)

Variable threshold

- We can vary w_0
- Receiver operating characteristic (ROC)

Variable threshold

- We can vary w₀
- Receiver operating characteristic (ROC)

Variable threshold

- We can vary w₀
- Receiver operating characteristic (ROC)

Variable threshold

- We can vary w₀
- Receiver operating characteristic (ROC)

Outline

- Error Estimation
- Statistical Estimation
- 3 Evaluation Heuristic
- Summary

Summary

Testing

- Use a test set independent of the training set
- Test set with known class labels
- O Do recall, and compare to known labels

Evaluation

- Statistical analysis of test results
- How large test set?

