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Review

Review of last week

+ What was your best learing experience last week?
∆ What is your greatest challenge?

(What requires more work to learn?)
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Review

Summary of last week

What did we learn?
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Review

The implementation of the perceptron

1 Does your implementation run properly?
2 How does it perform on the two given classification problems?
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Overview

The XOR problem
Failure of the perceptron

Features Class
x , y x ⊕ y
0,0 0
0,1 1
1,0 1
1,1 0

0 1
x

0

1

y
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Overview

Linear versus non-linear classifiers

1 Linear classifiers draw a hyperplane to separate classes.
1 this may or may not succeed.

2 Other hyper-surfaces can be drawn instead
1 quadratic, cubic, or polynomial in general
2 many different classes of non-polynomial surfaces

3 Add neurons in hidden layer(s)
1 no direct connection to input or output
2 gives non-linear classifiers
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Overview

Multi-layer perceptrons
A solution
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Training the network

Optimisation problem

min
w
|y− t|

1 We are allowed to choose the weights w
2 We aim reduce the error y− t
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Training the network

Error function

1 Different error functions are possible
1 E(y− t) = |y− t|
2 E(y− t) = (y− t)2

2 Similar optimisation problem
minw E(y− t)
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Training the network

Gradient descent
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Training the network

Gradient descent
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Training the network

Gradient descent with the perceptron

Recall y = g
(∑

wixi
)

Error E(y , t) = (y − t)2

Activation g(h) =

{
0 when h < 0
1 otherwise

Exercise

Differentiate ∂E
∂wi
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Training the network

The activation function
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g(h) =

{
0 when h < 0
1 otherwise
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Training the network

The activation function

0

x

0

1

g(
x
)

g(h) =

{
0 when h < 0
1 otherwise

0

x

0

1

g(
x
)

g(h) =
1

1 + exp(−βh)
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Training the network

Gradient descent with the sigmoid

Recall y = g
(∑

wixi
)

Error E(y , t) = (y − t)2

Activation g(n) =
1

1 + exp(−βh)

Derivative g′(n) = g(h)
(
1− g(h)

)
Exercise

Differentiate ∂E
∂wi
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Training the network

Gradient descent with the sigmoid

Recall y = g
(∑

wixi
)

Error E(y , t) =
1
2

(y − t)2

Activation g(n) =
1

1 + exp(−βh)

Derivative g′(n) = g(h)
(
1− g(h)

)
∂E
∂wi

= (y − t)y(1− y)xi , (1)

(2)
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Training the network

Gradient descent with the sigmoid

Recall y = g
(∑

wixi
)

Error E(y , t) =
1
2

(y − t)2

Activation g(n) =
1

1 + exp(−βh)

Derivative g′(n) = g(h)
(
1− g(h)

)
∂E
∂wi

= (y − t)y(1− y)xi , (1)

wi := wi − η(y − t)xi . (2)
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The back-propagation network

Outline

1 Review

2 Overview

3 Training the network

4 The back-propagation network

Prof Hans Georg Schaathun From perceptron to back-propagation 10th February 2015 18 / 24



The back-propagation network

Initialisation

x1

x2

x3

x4

f1

f2

f3

f4

f5

y

Hidden
Layer

Input
Layer

Output
Layer

All the weights are initialised with small random numbers.
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The back-propagation network

Recall

x1

x2

x3

x4

f1

f2

f3

f4

f5

y

1 Start with the hidden layer
1 Do perceptron recall for each

neuron in turn
1 read the inputs
2 calculate the weighted sum of

inputs
3 evaluate the activation function
4 output 0 or 1, making input to the

next layer

2 Do the same for the output layer
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The back-propagation network

Training
The back-propagation algorithm

Calculate the gradient ∂E(x,t)
∂wi

for each output weight wi
∂E
∂wi

= δx ′
i

where δ = (y − t)y(1− y)
where x ′

i is the output from the hidden layer
Update the weights as before

wi := wi − ηδx ′
i
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The back-propagation network

Gradients for the hidden layer

Recall y = g
(∑

wix ′
i
)

Output layer

Recall x ′
i = g

(∑
j

vi,jxj
)

Hidden layer

Error E(y , t) =
1
2

(y − t)2

Activation g(n) =
1

1 + exp(−βh)

Derivative g′(n) = g(h)
(
1− g(h)

)
Exercise

Differentiate ∂E
∂vi,j
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The back-propagation network

The back-propagation algorithm

Update each output weight wi , using
wi := wi − ηδx ′

i
where δ = (y − t)y(1− y)

Calculate the gradient ∂E(x,t)
∂wi,j

for each hidden weight vi,j

∂E
∂vi,j

= δ′i xj

where δ′i = x ′
i (1− x ′

i )δwi

Update the weights as before
vi,j := vi,j − ηδ′i xj
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The back-propagation network

Implementation

1 Building on your implementation in Haskell
1 implement the back-propagation algorithm
2 test your implemenentation
3 refactor the code so that it is easy to

initialise a network with one hidden layer
choose the number of nodes in each layer
train the network
test the network

2 Test your implementation with one hidden layer
1 test different numbers of hidden neurons
2 test on different data sets

1 breast cancer data
2 iris data
3 optionally, find more data sets
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