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Review of last week

+ What was your best learing experience last week?

A What is your greatest challenge?
(What requires more work to learn?)
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Summary of last week

What did we learn?
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The implementation of the perceptron

@ Does your implementation run properly?
© How does it perform on the two given classification problems?
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The XOR problem

Failure of the perceptron
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Linear versus non-linear classifiers

@ Linear classifiers draw a hyperplane to separate classes.
@ this may or may not succeed.
© Other hyper-surfaces can be drawn instead

@ quadratic, cubic, or polynomial in general
@ many different classes of non-polynomial surfaces

© Add neurons in hidden layer(s)

@ no direct connection to input or output
@ gives non-linear classifiers
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Multi-layer perceptrons

A solution
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Optimisation problem

min ly — t|

@ We are allowed to choose the weights w
© We aim reduce the errory —t
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Error function

@ Different error functions are possible
QO E(y-t)=|y—t
@ E(y-t)=(y-t?
@ Similar optimisation problem
e miny E(y — t)
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Gradient descent
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Gradient descent with the perceptron

Recall y = g( Z WiXi)
Error E(y,t) = (y — t)2
Activation g(h) = 0 when h <0
1 otherwise
Exercise
Differentiate g—v’i J
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Training the network

The activation function
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Training the network

The activation function

9(z)

0 whenh<O
g(h) =

1 otherwise 9 =3 +exp(—ph)
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Gradient descent with the sigmoid

Recall = Z W;X;)
Error E(y, T) (y —t)?
. . 1
Activation ag(n) = 1+ exp(—3h)
Derivative g'(n)=g(h)(1 —g(h))
Exercise
Differentiate 9& J
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Gradient descent with the sigmoid

Recall y=9( Z wix;)
Error E(y,t) = %(y—t)2
Activation g(n) = 1+ex1p(—5h)
Derivative g'(n)=g(h)(1 —g(h))
0E
ow, — W~y =%, (1)

(2)
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Gradient descent with the sigmoid

Recall y=9( Z wix;)
Error E(y,t) = %(y — 1)?
Activation ag(n) = 1+ex1p(—5h)
Derivative g'(n)=g(h)(1 —g(h))
0E
o, = Y=y, (1)
wi = w; —nly — 1)x. (2)
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Initialisation

Input Hidden Output
Layer Layer Layer

x| — ——

X2 — ‘\

X3 — ‘ 7 I
X4 — — N
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The back-propagation network

Recall
/. @ Start with the hidden layer
Xt — @ Do perceptron recall for each
. neuron in turn
Xo — \ @ read the inputs
.y o _calculate the weighted sum of
inputs
X3 — / © evaluate the activation function
. @ output 0 or 1, making input to the
X4 —— next layer
\*‘ @ Do the same for the output layer
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The back-propagation network

Training
The back-propagation algorithm

@ Calculate the gradient BE(" Y for each output weight w;
o 98 _5x!
ow; - i

e whered =(y —ty(1—y)

e where X/ is the output from the hidden layer
@ Update the weights as before

o W = W —nox;
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Gradients for the hidden layer

Recall y=9(>_ wx) Output layer
Recall x{=9(> vijx)  Hidden layer
)

Error E(y,t) = %(y—t)2

Derivative  g'(n) = g(h)(1 — g(h))

Exercise
Differentiate 2£
L
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The back-propagation algorithm

@ Update each output weight w;, using
° W= W —noX]
o where d = (y — t)y(1 -y)
@ Calculate the gradlent (x ‘) for each hidden weight v; ;

OE __ s/,
8v,'1j - 51)(]

e where §; = x/(1 — x{)ow;
@ Update the weights as before
@ Vji=Vij— 775,/)(]
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Implementation

@ Building on your implementation in Haskell

@ implement the back-propagation algorithm
@ test your implemenentation
© refactor the code so that it is easy to
@ initialise a network with one hidden layer
@ choose the number of nodes in each layer
@ train the network
@ test the network
© Test your implementation with one hidden layer
@ test different numbers of hidden neurons
@ test on different data sets
@ breast cancer data
@ iris data
@ optionally, find more data sets
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