
Pseudo-Random Number Generators
Functional Programming and Intelligent Algorithms

Prof Hans Georg Schaathun

Høgskolen i Ålesund

11th February 2015

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 1 / 22



Review

Outline

1 Review

2 Randomness

3 Random initial weights

4 Closure

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 2 / 22



Review

Review of yesterday

+ What did you learn yesterday?
∆ What is your greatest challenge?

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 3 / 22



Review

The implementation of the perceptron

1 How does your neural network perform?
2 What needs improvement

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 4 / 22



Randomness

Outline

1 Review

2 Randomness

3 Random initial weights

4 Closure

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 5 / 22



Randomness

Randomness

What is randomness?

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 6 / 22



Randomness

Probabilistic programs

How do we create probabilistic computer programs?
I.e. how do we make the computer act at random?

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 7 / 22



Randomness

Two options

True randomness uses physical sources of entropy
1 /dev/random on many systems
2 random-fu in Haskell

Pseudo-random number generators (PRNG) are deterministic but
random-looking

random, standard package in Haskell
random-tf, more recent Haskell package

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 8 / 22



Randomness

Linear Congruential Generators
A classic PRNG

Recurrence xi = a + cxi−1 mod m
Seed (initial state) x0

Pseudo-random sequence [x0, x1, x2, . . .]

Known as Lehmer’s algorithm

Will this pseudo-random sequence look random?

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 9 / 22



Randomness

Ciphers in counter mode
PRNG through cryptography

Cipher ek (x) = y
Pseudo-random sequence [x0, x1, x2, . . .] where

xi = ek (i)

Why does this give good randomness?

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 10 / 22



Randomness

The PRNG is a state machine

1 The state decides what the PRNG will output
Lehmer’s algorithm xi−1 is the state
Counter mode i is the state

2 State transition
Lehmer’s algorithm x 7→ a + cx mod m
Counter mode i 7→ i + 1

3 Output function
Lehmer’s algorithm x 7→ a + cx mod m
Counter mode i 7→ ek (i + 1)

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 11 / 22



Randomness

State machines in functional programming

How do we handle state machines in functional
programming?

1 What is special about functional programming?
2 What is difficult?
3 How can we do it?

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 12 / 22



Random initial weights

Outline

1 Review

2 Randomness

3 Random initial weights

4 Closure

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 13 / 22



Random initial weights

Random sequence

1 next :: TFGen -> (TFGen,Word32)

Exercise
Given a TFGen object, how do you generate an random, infinite list of
Word32 objects?

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 14 / 22



Random initial weights

Splitting a PRNG

Problem. After you have generated the infinite list, how do
you get the updated state?

1 split :: TFGen -> (TFGen,TFGen)

2 (g’,newstate) = split g

3 Use g’ to generate the list
4 newstate is your new state

Exercise
Given a TFGen object, how do you generate an random, infinite list of
Word32 objects?

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 15 / 22



Random initial weights

Splitting a PRNG

Problem. After you have generated the infinite list, how do
you get the updated state?

1 split :: TFGen -> (TFGen,TFGen)

2 (g’,newstate) = split g

3 Use g’ to generate the list
4 newstate is your new state

Exercise
Given a TFGen object, how do you generate an random, infinite list of
Word32 objects?

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 15 / 22



Random initial weights

Question

Where do you get the initial state?

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 16 / 22



Random initial weights

Different options

1 Hardcode an arbitrary seed
2 Use initialisation functions in the library

1 initTFGen
3 Use a library which provides true random values

random-fu

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 17 / 22



Closure

Outline

1 Review

2 Randomness

3 Random initial weights

4 Closure

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 18 / 22



Closure

Tuning parameters

1 Distribution of random initial weights?
2 β in the sigmoid function?
3 Number of iterations?

Artificial intelligence is not an exact science.

Trial and error.
Test different choices.

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 19 / 22



Closure

Tuning parameters

1 Distribution of random initial weights?
2 β in the sigmoid function?
3 Number of iterations?

Artificial intelligence is not an exact science.

Trial and error.
Test different choices.

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 19 / 22



Closure

Some guidelines

Weights: −1/
√

n ≤ w ≤ 1/
√

n
where n is the number of inputs to the layer

The weights should have similar magnitude
Small β — β ≤ 3

1 β = 1 is a good starting point

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 20 / 22



Closure

Number of epochs

Number of epochs

E
rr

o
r 

ra
te

Training

Testing

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 21 / 22



Closure

Exercise

Update the initNeuron and initNetwork functions with
randomised weights
You need to import a library, either

System.Random; or
System.Random.TF

Initialise the PRNG
Generate and use the weights for the network

Prof Hans Georg Schaathun Pseudo-Random Number Generators 11th February 2015 22 / 22


	Review
	Randomness
	Random initial weights
	Closure

