
Monads and State machines
Functional Programming and Intelligent Algorithms

Prof Hans Georg Schaathun

Høgskolen i Ålesund

10th February 2015

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 1 / 16



Review

Outline

1 Review

2 Monads

3 The State Monad

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 2 / 16



Review

The PRNG is a state machine

1 The state decides what the PRNG will output
Lehmer’s algorithm xi−1 is the state
Counter mode i is the state

2 State transition
Lehmer’s algorithm x 7→ a + cx mod m
Counter mode i 7→ i + 1

3 Output function
Lehmer’s algorithm x 7→ a + cx mod m
Counter mode i 7→ ek (i + 1)

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 3 / 16



Review

State machines in functional programming

How do we handle state machines in functional
programming?

1 What is special about functional programming?
2 What is difficult?
3 How can we do it?

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 4 / 16



Monads

Outline

1 Review

2 Monads

3 The State Monad

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 5 / 16



Monads

Monads

1 Category theory
2 Operations on types

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 6 / 16



Monads

Hiding in the Clouds

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 7 / 16



Monads

Hiding in the Clouds

Pure functions f :: a -> b and g :: b -> c

Monadic functions fm :: a -> MyMonad b
and gm :: b -> MyMonad c

return :: x -> MyMonad x

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 7 / 16



Monads

Function composition
Combining pure functions

1 h = f ◦ g
2 h(x) = f (g(x))

Or in Haskell

1 h = f . g

2 h x = f $ g x

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 8 / 16



Monads

Binding operations
Combining monadic functions

1 fm :: a -> MyMonad b

2 gm :: b -> MyMonad c

3 hm :: a -> MyMonad c

4 hm = fm »= gm

Equivalently
1 hm x = do

1 y <- fm x
2 gm y

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 9 / 16



Monads

Mixing pure and monadic functions

1 hm x = do
1 y <- fm x
2 let z = g y
3 return z

If you use a monad, you have to return a monad
fx :: MyMonad a -> b is impossible

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 10 / 16



The State Monad

Outline

1 Review

2 Monads

3 The State Monad

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 11 / 16



The State Monad

The State Monad

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 12 / 16



The State Monad

A State Machine for Random Numbers

1 import Data.Word32

2 getRandom :: State TFGen Word32
3 getRandom = do

1 s <- get
2 let (r,s’) = next s
3 put s’
4 return r

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 13 / 16



The State Monad

Composing actions

1 The State monad allows stateful actions
in the same way as IO actions

2 Compose them using do
1 Access to put and get
2 Use custom stateful actions like getRandom

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 14 / 16



The State Monad

Running the state machine

If you have a composite State action f, you can run the state
machine.

1 f :: IO State TFGen a

2 g :: TFGen

3 runState f g :: (a,TFGen)

The output is the contents of the action f and the final state.

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 15 / 16



The State Monad

Summary

The State monad enables a PRNG state
without explicitly passing the state in and out of every function

To use it, functions must be monadic
just like IO

Compose stateful actions using do
or, if you prefer, >>= and >>

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 16 / 16


	Review
	Monads
	The State Monad

