Monads and State machines
Functional Programming and Intelligent Algorithms

Prof Hans Georg Schaathun

Hegskolen i Alesund

10th February 2015

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 1/16

Outline

o Review

. HOGSKOLEN

I ALESUND

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 2/16

The PRNG is a state machine

@ The state decides what the PRNG will output

o Lehmer’s algorithm x;_4 is the state
e Counter mode i is the state

@ State transition

e Lehmer’s algorithm x — a+ ¢cx mod m
e Counter mode i — i+ 1

© Output function

o Lehmer’s algorithm x — a+ ¢cx mod m
e Counter mode i — ex(i+ 1)

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 3/16

State machines in functional programming

How do we handle state machines in functional
programming?

@ What is special about functional programming?
© What is difficult?
© How can we do it?

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 4/16

Outline

@ Monads

. HOGSKOLEN

I ALESUND

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 5/16

Monads

@ Category theory
© Operations on types

Prof Hans Georg Schaathun Monads and State machines

10th February 2015

ssssss

6/16

Hiding in the Clouds

whonto. Mt b Hoblaud ¢

N

o — 4t b —F—c

. HOGSKOLEN

ssssssss

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 7/16

Monads

Hiding in the Clouds
/\/ ~
g Moonsd 0, MﬂMM b Ny/%lm/ %

T fry

@ Purefunctionsf :: a -> bandg :: b -> c
@ Monadic functions fm :: a -> MyMonad b
andgm :: b -> MyMonad c

. HOGSKOLEN

ssssss

@ return :: x —-> MyMonad x e

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 7/16

Function composition

Combining pure functions

@ h=fog
Q h(x) =f(g(x))
Or in Haskell

Qnh=f. g
Qhx=f3$gx

Prof Hans Georg Schaathun Monads and State machines

10th February 2015

ssssss

8/16

Binding operations

Combining monadic functions

@ fm :: a -> MyMonad b
@ gmn :: b -> MyMonad c
Q@ hm :: a -> MyMonad c
Q hm = fm »= gm
Equivalently

0 hm x = do

Q@ v <- fm x
Q@ gmy

Prof Hans Georg Schaathun Monads and State machines

10th February 2015

ssssss

9/16

Mixing pure and monadic functions

Q@ nm x = do
Q@ vy <- fm x
@ let z =gy
© return z

@ If you use a monad, you have to return a monad
@ fx :: MyMonad a -> bisimpossible

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 10/16

Outline

© The State Monad

. HOGSKOLEN

I ALESUND

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 11/16

The State Monad

(S’éa:é(’. 3) b

ssssss

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 12/16

A State Machine for Random Numbers

Q import Data.Word32

Q getRandom :: State TFGen Word32
@ getRandom = do

Q@ s <- get
@ let (r,s’) = next s
@ put s’

Q@ return r

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 13/16

Composing actions

@ The State monad allows stateful actions
@ in the same way as |O actions
© Compose them using do

@ Access to put and get
@ Use custom stateful actions like getRandom

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 14/16

Running the state machine

If you have a composite State action £, you can run the state

machine.
Qr :: IO State TFGen a
Qo g :: TFGen
© runstate £ g :: (a,TFGen)

The output is the contents of the action £ and the final state.

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 15/16

Summary

@ The State monad enables a PRNG state

e without explicitly passing the state in and out of every function
@ To use it, functions must be monadic

o just like IO
@ Compose stateful actions using do

e or, if you prefer, >>=and >>

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 16/16

	Review
	Monads
	The State Monad

