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Review

The PRNG is a state machine

1 The state decides what the PRNG will output
Lehmer’s algorithm xi−1 is the state
Counter mode i is the state

2 State transition
Lehmer’s algorithm x 7→ a + cx mod m
Counter mode i 7→ i + 1

3 Output function
Lehmer’s algorithm x 7→ a + cx mod m
Counter mode i 7→ ek (i + 1)

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 3 / 16



Review

State machines in functional programming

How do we handle state machines in functional
programming?

1 What is special about functional programming?
2 What is difficult?
3 How can we do it?
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Monads

Monads

1 Category theory
2 Operations on types
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Monads

Hiding in the Clouds

Pure functions f :: a -> b and g :: b -> c

Monadic functions fm :: a -> MyMonad b
and gm :: b -> MyMonad c

return :: x -> MyMonad x
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Monads

Function composition
Combining pure functions

1 h = f ◦ g
2 h(x) = f (g(x))

Or in Haskell

1 h = f . g

2 h x = f $ g x
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Monads

Binding operations
Combining monadic functions

1 fm :: a -> MyMonad b

2 gm :: b -> MyMonad c

3 hm :: a -> MyMonad c

4 hm = fm »= gm

Equivalently
1 hm x = do

1 y <- fm x
2 gm y
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Monads

Mixing pure and monadic functions

1 hm x = do
1 y <- fm x
2 let z = g y
3 return z

If you use a monad, you have to return a monad
fx :: MyMonad a -> b is impossible
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The State Monad

The State Monad
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The State Monad

A State Machine for Random Numbers

1 import Data.Word32

2 getRandom :: State TFGen Word32
3 getRandom = do

1 s <- get
2 let (r,s’) = next s
3 put s’
4 return r

Prof Hans Georg Schaathun Monads and State machines 10th February 2015 13 / 16



The State Monad

Composing actions

1 The State monad allows stateful actions
in the same way as IO actions

2 Compose them using do
1 Access to put and get
2 Use custom stateful actions like getRandom
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The State Monad

Running the state machine

If you have a composite State action f, you can run the state
machine.

1 f :: IO State TFGen a

2 g :: TFGen

3 runState f g :: (a,TFGen)

The output is the contents of the action f and the final state.
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The State Monad

Summary

The State monad enables a PRNG state
without explicitly passing the state in and out of every function

To use it, functions must be monadic
just like IO

Compose stateful actions using do
or, if you prefer, >>= and >>
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