The Curse of Dimensionality Functional Programming and Intelligent Algorithms

Prof Hans Georg Schaathun

Høgskolen i Ålesund

12th February 2015

Prof Hans Georg Schaathun

The Curse of Dimensionality

12th February 2015 1 / 20

Outline

Challenges in training

- 2 Dimensionality Reduction
- 3 Linear Discriminants
- 4 Principal Component Analysis

Prof Hans Georg Schaathun

The Curse of Dimensionality

12th February 2015 2 / 20

Sources of Bad Training

Very often we get a high error rate when we have trained a neural network.

• Why?

- Too few nodes
- Too few training iterations
- Too many training iterations
- Too little training data

Sources of Bad Training

Very often we get a high error rate when we have trained a neural network.

• Why?

- Too few nodes
- 2 Too few training iterations
- Too many training iterations
- Too little training data

THE 1 AT 1

Underfitting and overfitting

Performance on	Underfitting	Overfitting
Training set	Bad	Good
Testing set	Bad	Bad

Underfitting	Overfitting	
Too few epochs	Too many epochs	
Too few nodes	Too little training data	

Prof Hans Georg Schaathun

The Curse of Dimensionality

Underfitting and overfitting

Performance on	Underfitting	Overfitting
Training set	Bad	Good
Testing set	Bad	Bad

Underfitting	Overfitting
Too few epochs	Too many epochs
Too few nodes	Too little training data

Prof Hans Georg Schaathun

The Curse of Dimensionality

Number of epochs

Prof Hans Georg Schaathun

The Curse of Dimensionality

12th February 2015 5 / 20

Degrees of Freedom

Figure 13.1 from Schaathun Machine Learning in Image Steganalysis

Prof Hans Georg Schaathun

The Curse of Dimensionality

12th February 2015 6 / 20

Curse of Dimensionality

- Dimension = Number of features
- High dimension
 - ⇒ large volume
 - ⇒ sparse data
- Dimension = Number of weights (less one)
 - ⇒ degrees of freedom
 - ⇒ flexible model
 - \Rightarrow fits *training data* too well

THE 1 AT 1

Outline

- Dimensionality Reduction
- 3 Linear Discriminants
- Principal Component Analysis

Prof Hans Georg Schaathun

The Curse of Dimensionality

12th February 2015 8 / 20

Dimensionality Reduction

Feature selection

- look for correlation between features
- remove redundant features

Peature extraction

- transform from feature space to lower dimension
- generalisation of feature selection
- individual features no longer recognisable

Dimensionality Reduction

Feature selection

- look for correlation between features
- remove redundant features

Peature extraction

- transform from feature space to lower dimension
- generalisation of feature selection
- individual features no longer recognisable

A D b 4 A b

Dimensionality Reduction

Feature selection

- look for correlation between features
- remove redundant features
- Peature extraction
 - transform from feature space to lower dimension
 - generalisation of feature selection
 - individual features no longer recognisable

Feature Selection

The simplest case

Trial and error

- Train and test the classifier
- Periode Some feature
- Train and test again
- If performance is improved,
 - discard the removed feature
 - else, reinstate it
- 8 Repeat from Step 2
- Alternatively, bottom-up
 - Start with no features
 - Repeatedly add the most useful feature

Feature Selection

The simplest case

Trial and error

- Train and test the classifier
- Period Remove some feature
- Train and test again
- If performance is improved,
 - discard the removed feature
 - else, reinstate it
- 8 Repeat from Step 2
- Alternatively, bottom-up
 - Start with no features
 - · Repeatedly add the most useful feature

Outline

- 2 Dimensionality Reduction
- Linear Discriminants
- 4 Principal Component Analysis

Prof Hans Georg Schaathun

The Curse of Dimensionality

12th February 2015 11 / 20

Separation

What properties make separation simple? What makes it harder?

- High variance within a class: hard
- Big difference between classes: easier

12/20

12th February 2015

Prof Hans Georg Schaathun

The Curse of Dimensionality

Separation

What properties make separation simple? What makes it harder?

- High variance within a class: hard
- Big difference between classes: easier

Between-class variability

- Let μ_i be the mean feature vector of Class *i*
- I How can we measure the difference between the two Classes?

• $\mu_1 - \mu_2$

Vectors: we measure variability per axis

THE 1 AT 1

A classification heuristic

- Classifier: hyperplane $\mathbf{w} \cdot \mathbf{x} w_0 = 0$
- Heuristic: $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} w_0$ (distance to hyperplane)
 - Class 1: h(x) < 0</p>
 - Class 2: h(x) > 0
 - The larger |*h*(**x**)|, the better confidence
- Within-class variation (Class i)
 - $Var(h(\mathbf{x})) = \mathbf{w}^T \Sigma_i^2 \mathbf{w}$
 - Where Σ_i^2 is the covariance matrix

•
$$\Sigma_i^2 = E((\mathbf{x} - \boldsymbol{\mu}_i)(\mathbf{x} - \boldsymbol{\mu}_i)^{\mathrm{T}})$$

Prof Hans Georg Schaathun

Fisher Linear Discriminant (FLD)

• Separation:

•
$$L = \frac{\sigma_{\text{between}}^2}{\sigma_{\text{within}}^2} = \frac{(\mathbf{w}\boldsymbol{\mu}_1 - \mathbf{w}\boldsymbol{\mu}_2)^2}{\mathbf{w}^T \boldsymbol{\Sigma}_1^2 \mathbf{w} + \mathbf{w}^T \boldsymbol{\Sigma}_2^2 \mathbf{w}}$$

• Minimise separation by

•
$$\mathbf{w} = (\Sigma_1^2 + \Sigma_2^2)(\mu_1 - \mu_2)$$

Aalesend University Col

15/20

12th February 2015

Prof Hans Georg Schaathun

The Curse of Dimensionality

Outline

- 2 Dimensionality Reduction
- 3 Linear Discriminants
- Principal Component Analysis

Principal Component Analysis

Principal Component Analysis Figure 6.6 from Marsland

FIGURE 6.6 Two different sets of coordinate axes. The second consists of a rotation and translation of the first and was found using Principal Components Analysis.

Prof Hans Georg Schaathun

The Curse of Dimensionality

17/20

12th February 2015

Principal Component Analysis

- PCA finds a new basis
- First axis the principal component
 - ... explains most of the variation
- Next axis chosen perpendicular to previous axes
 - ... to explain most of the remaining variation

THE 1 AT 1

PCA Algorithm

- Write N data points as rows of a matrix X (size $N \times M$)
- For each column, subtract its mean to get B
- Ompute covariance $C = \frac{1}{N}B^{T}B$
- Compute eigenvectors and eigenvalues of C
 - $V^{-1}CV = D$
 - D: diagonal matrix with eigenvalues
 - V: matrix of eigenvectors
- Sort the columns of D in deacrising order of eigenvalues
 - apply same order to V
- **(**) Discard columns with eigenvalue less than η
- Transform data by multiplication with V

THE 1 AT 1

Conclusion

Performance on	Underfitting	Overfitting
Training set	Bad	Good
Testing set	Bad	Bad

	Underfitting	Overfitting
Training time	Too few epochs	Too many epochs
Curse of dimensionality	Too few nodes	Too little training data

Prof Hans Georg Schaathun