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Components of the 
continuous GA
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Algorithm flow

1. Define cost function, cost, variables. 
Select GA parameters.

2. Generate initial population.

3. Find cost for each chromosome.

4. Select mates for reproduction.

5. Mating. 

6. Mutation.

7. Convergence check (repeat from 3)
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Adapted from [1].

Compared with the 
binary GA, there is
no step for decoding
chromosomes here



Variables and cost function
● Nvar-dimensional problem  

chromosome has Nvar variables 
(genes), i=1,.., Nvar

• chrom = [p1,p2,...,pNvar]
• Cost = f(chrom) = f(p1,p2,...,pNvar)
• Example: 2D height map in xy-plane

• chrom = [x,y]
• cost = height = f(chrom) = f(x,y)
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Variables and cost function
• No encoding to binary
• Use ”continuous” values

– but limited by computer precision, eg., 
• floating points
• double precision points
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Population
• Set of Npop chromosomes
• Each chromosome is Nvar row vector
• Represented as matrix of cts values

– Dimensions are Npop  Nvar

• All variables pi normalised to 0≤pi≤1
– ”Unnormalise” in cost function

• Initial population randomly assigned:
– pop=rand(Npop, Nvar));
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Unnormalisation

• Let
– phi be the highest value of p
– plo be the lowest value of p
– pnorm be the normalised value of p

• Then the unnormalised value of p is
p = (phi - plo)pnorm + plo 
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Unnormalisation

• Example:
– Phi = 20 and plo = -20
– pnorm = 0.75

• Then the unnormalised value of p is
p = (phi - plo)pnorm + plo 

= (20-(-20))*0.75 + (-20) = 40*0.75 – 20

 = 30 – 20 = 10
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Natural selection

1. Rank chromosomes (low cost better)

2. Only keep best fraction (=selection 
rate Xrate) of Npop chromosomes  
Nkeep = Xrate  Npop chromosomes 
survives

3. Let kept chromosomes mate and 
replace discarded chromosomes
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Pairing methods

• From top to bottom (1+2, 3+4, etc.)
• Uniform random pairing
• Weighted random pairing

• rank weighting
• cost weighting

• Tournament selection
• Others
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Mating
• Many approaches
• Simple method: Just swap variable 

values at random crossover points
– Problem: No new information introduced
– Must rely on mutation for new genes

• Blending method (Radcliffe): Combine 
values of parents into new values
– Blending limits values to interval of 

parents
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Mating
• Problem with point crossover methods:

• Merely interchanging data! No new 
genetic material generated!
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Mating
• Blending method:

– pnew = βpmn + (1 - β) pdn
– where

• β is random in range [0,1]
• pmn is nth variable in mum chromosome
• pdn is nth variable in dad chromosome

– which variables to blend?
• eg., all points to the right or left of crossover p.
• only a selected few

– can also use different β for each var 

•   
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Mating
• Blending method:

– Works well on several interesting 
problems (Michalewicz, 1994)

– Problem: Values are bracketed by the 
extremes already present in the 
population  must use an extrapolation 
method to avoid this.
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Mating
• Extrapolation method:

– Extrapolation introduce values outside 
range of parents

– Linear crossover:
• Three offspring
• pnew1 = 0.5pmn + 0.5pdn  (average)
• pnew2 = 1.5pmn - 0.5pdn (lower/higher)
• pnew3 = -0.5pmn + 1.5pdn (higher/lower)
• Variables outside bounds are discarded
• Best two offspring are kept
• Can use other factors than 0.5
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Mating
• Extrapolation method:

– Example where pmn = 4, pdn = 8
• pnew1 = 0.5pmn + 0.5pdn  = 2 + 4 = 6 

(average)
• pnew2 = 1.5pmn - 0.5pdn = 6 – 4 = 2 (lower)
• pnew3 = -0.5pmn + 1.5pdn = -2 + 12 = 10 

(higher)

– We get a new lower, an average, and a 
new higher variable value
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Mating
• Extrapolation + crossover (Haupt):

– Randomly select a variable for crossover
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Crossover point:

Parents:

Selected 
variables:



Mating
• Extrapolation + crossover (Haupt):
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Offspring:

• All variables after crossover point are swapped 
in offspring

• β is a random value in range [0,1]
Limits offspring variables to bounds of 

parents
• Use β > 1 for variables outside parent bounds

  Must then perform a check for out-of-
bounds



Mutations

• Randomly mutate a fraction of values 
in list of chromosomes
– New random (normalised) values in [0,1]

• Can introduce novelty (new things)
– Avoid early convergence to local minima

• Mutation rate μ (mu), eg. 20%
• High mutation rate: Better exploration

– But slower convergence
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Elitism

• Always keep best chromosome in 
population and never mutate it!

• Do not throw away a good solution!
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Next generation

• Insert offspring into population
• Recalculate costs and repeat process 

until
• convergence
• max number of iterations reached
• you are happy for some reason
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Example 2D problem
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9.039, 8.668

Test function f7(x,y)

Adapted from [1].



Example 2D problem
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Adapted from [1].

Initial population

*

*
*

*

* best chromosomes 

Parents



Example 2D problem
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Adapted from [1].

Pairs of random numbers to select mates:
(0.6710, 0.8124)  (2,3) from cumulative rank in table
(0.7930, 0.3039)  (3,1) from cumulative rank in table



Example 2D problem
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Adapted from [1].

Create offspring and replace bad chromosomes 

Mates (2,3)

Mates (3,1)



Example 2D problem
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Adapted from [1].

2nd and 3rd generations



Example 2D problem
• Example converged after only 3 gen’s
• xm=9.0215, ym=8.6806, cost = -18.53

28Adapted from [1].
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