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A receding horizon genetic
algorithm (RHGA) for dynamic
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A case study on optimal
positioning of tugs
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Introduction

* Challenge: How to simultaneously
i. coordinate control of resources;
Ii. assign tasks; and
lii. track multiple targets
in a dynamically changing environment?
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Introduction

* Target assignment/resource allocation:
— which agent (resource) shall track which target(s)?
* Collective tracking/positioning:

— how should agents move to increase net tracking
performance or minimise cost?

* Tracking performance:
— how to define a cost measure?



. HOGSKOLEN .
| ALESUNTD Ingenlgr

Introduction

* Dynamic environment:
— how can agents respond to
* targets changing their trajectories?

* new targets appearing and/or targets
disappearing?

» variable external conditions?
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Case study: Positioning of tugs

* Norwegian Coastal Administration (NCA)

— runs a Vessel Traffic Services (VTS) centre in
Vardg

— monitors ship traffic off northern Norwegian
coast with the automatic identification system
(AIS)

— commands a fleet of patrolling tug vessels

— Mainly human control — a decision support
system based on risk and statistics is
implemented but with limited usability
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Case study: Positioning of tugs

» Patrolling tug vessels (=“agents”)

— must stop drifting oil tankers (="targets”) or
other ships and tow them to safety before
grounding

— are instructed by NCA to move to “good”
positions that (hopefully) reduce the risk of
drift grounding accidents
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Automatic identification system (AlS)
* Ships required to use AlS by law

 Real-time VHF radio transmission to VTS
centres

« Static info: ID, destination, cargo, size, etc.
* Dynamic info: Speed, position, heading, etc.

* Enables prediction of future state of ships
(e.g., position, speed, rate of turn |
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Dynamical risk models of NCA

* Risk-based decision support tools

* Based on static information
— type of ships, cargo, crew, nationality, etc.
— geography, e.g., known dangerous waters
* ... and dynamic information
— Ships’ position, direction, speed, etc.
— weather conditions, e.g., wind, currents, waves, etc.

* Employs statistical models — focus on mean and
variance from history = what about current and
predicted dynamics?
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Dynamical risk models of NCA
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Dynamical risk models of NCA

Courtesy
NCA11
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Motivation

* Today: Human operator makes decisions
based on dynamical risk models

* Limitation: Requires small number of tankers
and tugs to be manageable by human
operator

* Qil/gas development in northern waters will
iIncrease traffic in years to come -

How should a fleet of tugs move to reduce
risk of accidents?

* Real-time algorithm (decision support tool)
needed for optimising tug positioning

12
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Oil tanker traffic

|Wednesday, 31 Aug 2005 08:40:32 UTC|
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* Traffic: Along
corridors

* Tugs: Near shore
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Oil tanker line

Problem
description ..

* Lines of
motion for 3 ol
tankers (white)
and 2 patrol
tugs (black)

t=td

* Predicted drift
paths at future
points in time

* How should t=

tugs move?
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Scenario explanation

* Crosspoint: Where drift trajectory of a tanker
crosses patrol line of tugs

* Typical drift time: 8-12 hours before crossing
of patrol line - entering high-risk zone

* White circles: Predicted crosspoints of drift
trajectories of 6 oil tankers

* Prediction horizon T,=24 hours ahead

* Black circles: Suboptimal trajectories of 3 tugs
- How to optimise tug trajectories?

16
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Method

Examine a finite number of potential patrol
]’grajectogles and evaluate a cost function
or eac

Use a genetic algorithm to find good
solutions in reasonable time

Use receding horizon control to
incorporate a dynamic environment and
update trajectories

Plan trajectories 24 hours ahead but only
execute first hour, then replan and repeat

17
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Genetic algorithm (GA)

* Employs the usual GA scheme:

1. Define cost function, chromosome encoding and
set GA parameters, e.g., mutation, selection

Generate an initial population of chromosomes
Evaluate a cost for each chromosome

Select mates based on a selection parameter
Perform mating

Perform mutation based on a mutation
parameter

Repeat from Step 3 until desired cost level
reached

QR wWN

~
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Some GA features

Population size: Number of chromosomes

Selection: Fraction of chromosomes to keep for
survival and reproduction

Mating: Combination of extrapolation and crossover,
single crossover point

Mutation rate: Fraction of genes mutated at every
iteration

19
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Cost function

* Sum of distances between all crosspoints and nearest
patrol points (positions of tugs)

— only care about nearest tug that can save tanker
* Define yp as pth tug’s patrol point at time ¢
* Define yr as cth tanker’s cross point at time ¢

20
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Cost function

Consider N, oil tankers and N, patrol tugs

* Define yp as pth tug’s patrol point at time ¢

Define y¢ as cth tanker’s cross point at time ¢

Consider N, oil tankers and N, patrol tugs

Function of ti = | p
cana 0T f6C)= 3 X minbi

chromosome C:: I=lq = N
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Cost function cont'd
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Chromosome encoding

« Contains possible set of N, control trajectories:

N, N
C; = [ul, ulTh,u%,...,u%h, U, uTﬂ
« Each control trajectory us»,...,urpis a
seguence of normalised control inputs with
values between -1 (max speed south) and
+1 (max speed north)

* Sequence of patrol pomts for tug p attime t

from differen sam le time):
yf T yt 1 _I_ ut p

23
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Receding horizon genetic algorithm
(RGHA)

* Scenario changes over time:
— Winds, ocean currents, wave heights, etc.
— Tanker positions, speeds, directions, etc.

* Must reevaluate solution found by GA regularly
-> receding horizon control:

1.Calculate (sub)optimal set of trajectories with
duration Th (24 hours, say) into the future

2.Execute only first part (1 hour, say) of trajectories

3.Repeat from Step 1 given new and predicted
information

24
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Simulation
study

Oil tankers
Number of tankers N, 6
Random initial position [—50, 50]
Random velocity [—1,1]
Drift direction East
Random drift time Az (hours) | [8,9,...,12]
Patrol tugs
Number of tugs N, 3
Random initial position [—50, 50]
Max velocity +3
GA settings
Iterations N, 100
Population size 10
Mutation rate 0.1
Selection 0.5
RHC settings
Prediction horizon 7}, (hours) 24
Simulation step (hours) 1
Number of steps Ngpc 26
General settings
Number of scenarios Ny, 20
Cost comparison fraca » Karic

nNi@gr
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Simulation example, t =0
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Simulation example, t =10
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Simulation example, t =25
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Results

* Mean cost

— Static strategy: 2361

— RHGA: 808

— Performance improvement: 65.8%
* Standard deviation

— Static strategy: 985

— RHGA: 292

— Improvement: 70.4%

29
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Conclusions

* The RHGA is able to simultaneously perform multi-target
allocation and tracking in a dynamic environment

* The choice of cost function gives good tracking with target
allocation “for free” (need no logic)

* The RHGA provides good prevention against possible drift
accidents by accounting for the predicted future
environment

30
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Future directions

* Comparison with other algorithms

Extend/change cost function

— punish movement/velocity changes (save fuel)

— vary risk factor (weight) of tankers

— use a set of various max speeds for tankers/tugs

* Incorporate boundary conditions
Add noise and nonlinearities
Extend to 2D and 3D

Test with other/faster systems

31
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Questions?

4

o Z-" i o1 ‘Suomi
g T eriae Finland

el e e
!"-'

Gulf of

}
] L E < Bothnia
= Wy
. .
&1y )
J.l Ippsala

Baltic Sea

Robin T. Bye,
Virtual Mgre project,

Alesund University College,


mailto:roby@hials.no
http://www.virtualmore.org/
http://www.hials.no/

HOGSKOLEN

Il ALESUND

Results

Table 2: Simulation results.

Simulation foatic fruca | Performance
run (%)
1 1837.4 | 463.7 74.8
2 1552.2 | 11459 26.2
3 2278.0 | 675.1 704
4 3097.3 | 1314.0 576
5 2822.3 | 855.8 69.7
6 39294 | 1526.9 61.1
7 2431.7 | 633.5 739
8 2877.1 | 880.2 69.4
9 31747 | 794.0 750
10 1221.5 | 665.2 45.5
11 38390 | 11134 710
12 4356.1 | 914.3 790
13 1921.9 | 818.8 574
14 1536.1 | 5834 62.0
15 1489.2 | 869.5 41.6
16 1546.6 | 575.5 62.8
17 1456.7 | 457.1 68.6
18 1836.8 | 445.8 75.7
19 950.8 559.9 41.1
20 3068.0 | 8744 71.5
Mean 2361.2 | 808.3 65.8
Standard dev. | 984.7 291.6 704
Best run: 12 790
Worst run: 2 26.2

Ingenigr
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Simulation example, t =0
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Simulation example, t =5
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Simulation example, t =10
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Simulation example, t =15
hours
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Simulation example, t =20
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Simulation example, t =25
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