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 A receding horizon genetic 
algorithm (RHGA) for dynamic 

resource allocation: 
A case study on optimal 

positioning of tugs
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Introduction

• Challenge: How to simultaneously

i. coordinate control of resources;

ii. assign tasks; and

iii. track multiple targets

in a dynamically changing environment?
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Introduction

• Target assignment/resource allocation:

– which agent (resource) shall track which target(s)?

• Collective tracking/positioning:

– how should agents move to increase net tracking 
performance or minimise cost?

• Tracking performance:

– how to define a cost measure?
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Introduction

• Dynamic environment:

– how can agents respond to

• targets changing their trajectories?

• new targets appearing and/or targets 
disappearing?

• variable external conditions?
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Case study: Positioning of tugs

• Norwegian Coastal Administration (NCA)
– runs a Vessel Traffic Services (VTS) centre in 

Vardø
– monitors ship traffic off northern Norwegian 

coast with the automatic identification system 
(AIS)

– commands a fleet of patrolling tug vessels
– Mainly human control – a decision support 

system based on risk and statistics is 
implemented but with limited usability
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Case study: Positioning of tugs

• Patrolling tug vessels (=“agents”)
– must stop drifting oil tankers (=“targets”) or 

other ships and tow them to safety before 
grounding

– are instructed by NCA to move to “good” 
positions that (hopefully) reduce the risk of 
drift grounding accidents

7



Automatic identification system (AIS)
• Ships required to use AIS by law
• Real-time VHF radio transmission to VTS 

centres
• Static info: ID, destination, cargo, size, etc.
• Dynamic info: Speed, position, heading, etc.
• Enables prediction of future state of ships 

(e.g., position, speed, rate of turn)
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Dynamical risk models of NCA
• Risk-based decision support tools
• Based on static information

– type of ships, cargo, crew, nationality, etc.
– geography, e.g., known dangerous waters

• … and dynamic information
– Ships’ position, direction, speed, etc.
– weather conditions, e.g., wind, currents, waves, etc.

• Employs statistical models – focus on mean and 
variance from history  what about current and 
predicted dynamics?
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Dynamical risk models of NCA

Courtesy 
NCA10



Dynamical risk models of NCA

Courtesy 
NCA11



Motivation

• Today: Human operator makes decisions 
based on dynamical risk models

• Limitation: Requires small number of tankers 
and tugs to be manageable by human 
operator

• Oil/gas development in northern waters will 
increase traffic in years to come  

    How should a fleet of tugs move to reduce 
risk of accidents?

• Real-time algorithm (decision support tool) 
needed for optimising tug positioning 
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Oil tanker traffic

• Traffic: Along 
corridors

• Tugs: Near shore

• We can 
approximate 
corridors by parallel 
lines

Courtesy NCA
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Problem 
description
• Lines of 

motion for 3 oil 
tankers (white) 
and 2 patrol 
tugs (black)

• Predicted drift 
paths at future 
points in time

• How should 
tugs move?
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Example scenario
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Scenario explanation

• Crosspoint: Where drift trajectory of a tanker 
crosses patrol line of tugs

• Typical drift time: 8-12 hours before crossing 
of patrol line  entering high-risk zone 

• White circles: Predicted crosspoints of drift 
trajectories of 6 oil tankers

• Prediction horizon Th=24 hours ahead
• Black circles: Suboptimal trajectories of 3 tugs 

 How to optimise tug trajectories?
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Method

• Examine a finite number of potential patrol 
trajectories and evaluate a cost function 
for each

• Use a genetic algorithm to find good 
solutions in reasonable time

• Use receding horizon control to 
incorporate a dynamic environment and 
update trajectories

• Plan trajectories 24 hours ahead but only 
execute first hour, then replan and repeat
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Genetic algorithm (GA)

• Employs the usual GA scheme:
1. Define cost function, chromosome encoding and 

set GA parameters, e.g., mutation, selection 
2. Generate an initial population of chromosomes
3. Evaluate a cost for each chromosome
4. Select mates based on a selection parameter
5. Perform mating
6. Perform mutation based on a mutation 

parameter
7. Repeat from Step 3 until desired cost level 

reached
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Some GA features

• Population size: Number of chromosomes

• Selection: Fraction of chromosomes to keep for 
survival and reproduction

• Mating: Combination of extrapolation and crossover, 
single crossover point

• Mutation rate: Fraction of genes mutated at every 
iteration 
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Cost function
• Sum of distances between all crosspoints and nearest 

patrol points (positions of tugs)

– only care about nearest tug that can save tanker

• Define ytp as pth tug’s patrol point at time t

• Define ytc as cth tanker’s cross point at time t
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Cost function
• Consider No oil tankers and Np patrol tugs 

• Define ytp as pth tug’s patrol point at time t

• Define ytc as cth tanker’s cross point at time t

• Consider No oil tankers and Np patrol tugs 

Function of time 
t and 
chromosome Ci: 21



Cost function cont’d

cost

nearest patrol point

cross point
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Chromosome encoding
• Contains possible set of Np control trajectories:

• Each control trajectory u1p,…,uTh
p is a 

sequence of normalised control inputs with 
values between -1 (max speed south) and 
+1 (max speed north)

• Sequence of patrol points for tug p at time t 
from difference equation (ts is sample time):
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Receding horizon genetic algorithm 
(RGHA)

• Scenario changes over time:
– Winds, ocean currents, wave heights, etc.
– Tanker positions, speeds, directions, etc.

• Must reevaluate solution found by GA regularly 
 receding horizon control:
1.Calculate (sub)optimal set of trajectories with 

duration Th (24 hours, say) into the future
2.Execute only first part (1 hour, say) of trajectories 
3.Repeat from Step 1 given new and predicted 

information
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Simulation
study
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Simulation example, td=0 
hours
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Simulation example, td=10 
hours
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Simulation example, td=25 
hours
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Results
• Mean cost

– Static strategy: 2361

– RHGA: 808

– Performance improvement: 65.8%

• Standard deviation

– Static strategy: 985

– RHGA: 292

– Improvement: 70.4%
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Conclusions
• The RHGA is able to simultaneously perform multi-target 

allocation and tracking in a dynamic environment

• The choice of cost function gives good tracking with target 
allocation “for free” (need no logic) 

• The RHGA provides good prevention against possible drift 
accidents by accounting for the predicted future 
environment
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Future directions

• Comparison with other algorithms
• Extend/change cost function

– punish movement/velocity changes (save fuel)
– vary risk factor (weight) of tankers
– use a set of various max speeds for tankers/tugs

• Incorporate boundary conditions
• Add noise and nonlinearities
• Extend to 2D and 3D
• Test with other/faster systems
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Questions?

AAUC campus

Robin T. Bye, roby@hials.no
Virtual Møre project, 

www.virtualmore.org
Ålesund University College, www.hials.no
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Results
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Simulation example, td=0 
hours
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Simulation example, td=5 
hours
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Simulation example, td=10 
hours
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Simulation example, td=15 
hours
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Simulation example, td=20 
hours
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Simulation example, td=25 
hours
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