Confidence Interval Interval Estimation

Prof Hans Georg Schaathun

Høgskolen i Ålesund

9th January 2014

1/6

Point Estimation

- Experiment → data D
- Estimator of θ : $\hat{\theta}: D \to \mathbb{R}$
 - $\hat{\theta}(D)$ is a stochastic variable (because D is)
- Unbiased estimator: $E_D(\hat{\theta}(D)) = \underline{\theta}$
- but $|\theta \hat{\theta}(D)|$ may be large

Interval estimation

- Experiment → data D
- Two 'estimators'
 - $\hat{\theta}_{\text{low}}: D \to \mathbb{R}$ 7
 - $\hat{ heta}_{ ext{high}}: D
 ightarrow \mathbb{R}$
- Bounded probability: $P_D(\hat{\theta}_{low} \leq \hat{\theta} \leq \hat{\theta}_{high}) \geq \hat{\theta}$
- Level of confidence β
 - should be large (95%, 98%, 99%)
- $(\hat{\theta}_{low}, \hat{\theta}_{high})$ is a $(100\beta)\%$ confidence interval.

Motivation of confidence interval

- Two key quantities combined
 - approximate estimated value (interval)
 - level of confidence
- Opinion polls sometimes use only error margins
 - $\hat{\theta} \pm e$
 - interval without confidence level
 - unbounded stochastic variables ⇒ the error may be larger

Warning! Pitfall

Confidence level versus probability

$$P_{\underline{D}}(\hat{\theta}_{low}(\underline{D}) \leq \theta \leq \hat{\theta}_{high}(\underline{D}) \geq \beta$$

- The confidence level is a priori probability
 - that the confidence interval will enclose the paramter θ
- It is not
 - the probability that θ is within the interval
 - because θ is not a stochastic variable

Summary

$$P_D(\hat{\theta}_{low}(D) \leq \theta \leq \hat{\theta}_{high}(D)) \geq \beta$$

Next video: confidence interval for the binomial proportion

