Decoding Error Probabilities

A Case for Estimation

Prof Hans Georg Schaathun

Høgskolen i Ålesund

7th January 2014

7th January 2014

Decoding Error

- Sending a bit on BSC is a Bernoulli trial.
 - either correct transmission (Success) or bit error (Failure).
- Consider sending a k-bit message word m
 - channel with error control
 - Decoder gives an estimate m̂
 - We get either
 - o correct decoding (Success)
 - decoding error (Failure)
- This is also a Bernoulli trial
 - Success probability p
 - or decoding error probability $p_e = 1 p$

Experiment and Theory

World of This

World of Forms
Pe

Concrete

Experiment

Observed values

Stochastic variables

Estimate

Things

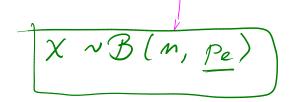
Abstract

Theory

Probability distribution

Unknown parameters
Unknown value

Ideas


estimate

A Monte Carlo Experiment

- Recall the Monte Carlo simulator.
 - Test the system n times
 - Record the number X of errors (failures)

Exercise

What is the probability distribution of X?

so n Bernoulli trids

Experiment and Theory

Desired values	Observable values
Desired values	Observable values
p _e	n, X
(7	$\chi \sim B(n, pe)$
	$E(x) = m \cdot Pe$ $E(x/m) = Pe$
4	4
	15/1.

Point Estimator

Summary

- Error rate: R = X/n a stochastic variable

 Fror probability: $p_e = E(R)$ unknown parameter
 - Observing enough instances of R X
 - we can make an opinion of the approximate value of $E(R) = p_e$
 - R ≈ p_e with high probability ← • R is an estimator of p_e

Note the estimator is a stochastic variable.

