Decoding Error Probabilities

A Case for Estimation

Prof Hans Georg Schaathun

Høgskolen i Ålesund

7th January 2014

1/6

Decoding Error

- Sending a bit on BSC is a Bernoulli trial.
 - either correct transmission (Success) or bit error (Failure).
- Consider sending a k-bit message word m
 - channel with error control
 - Decoder gives an estimate $\hat{\mathbf{m}}$
 - We get either
 - correct decoding (Success)
 - decoding error (Failure)
- This is also a Bernoulli trial
 - Success probability p
 - or decoding error probability $p_e = 1 p$.

Experiment and Theory

Concrete

Experiment

Observed values

Stochastic variables

Estimate

Things

Abstract

Theory

Probability distribution

Unknown parameters

Unknown value

Ideas

A Monte Carlo Experiment

- Recall the Monte Carlo simulator.
 - 1 Test the system *n* times
 - 2 Record the number *X* of errors (failures)

Exercise

What is the probability distribution of *X*?

Experiment and Theory

Desired values	Observable values
p_e	n, X

Point Estimator

Summary

- Error rate: R = X/n a stochastic variable
- Error probability: $p_e = E(R)$ unknown parameter
- Observing enough instances of R
 - we can make an opinion of the approximate value of $E(R) = p_e$
- $R \approx p_e$ with high probability
 - R is an estimator of p_e

Note the estimator is a stochastic variable.