Point Estimation

Exercise Example

Prof Hans Georg Schaathun

Høgskolen i Ålesund

10th January 2014

Estimating the binomial proportion

Exercise

Suppose you are testing a system with error probability of 0.01. How many trials do you need to make your estimator \hat{p}_{e} fall between 0.011 and 0.009 99.75\% of the time?

- where $X \sim B(n, 0.01)$

- solve $g(n)=0.9975$

Estimating the binomial proportion

Exercise

Suppose you are testing a system with error probability of 0.01. How many trials do you need to make your estimator \hat{p}_{e} fall between 0.011 and 0.009 99.75\% of the time?
(1) $P(0.009 \leq \hat{p} \leq 0.011)=0.9975$
(2) $P(0.009 n \leq X \leq 0.011 n)=0.9975$

- where $X \sim B(n, 0.01)$
(3) Function $g(n)=P(0.009 n \leq X \leq 0.011 n)$
- solve $g(n)=0.9975$
(4) $g(n)=F(0.011 n)-F(0.009 n)$ where F is CDF of $X \sim(n, 0.01)$

Closure

- Larger $n \Rightarrow$ better estimate
- higher probability close to the true value
- This is a toy exercise
- get used to the estimator as a stochastic variable
- example of how to play with numbers to get an impression
- In practice, estimating p
- p is unknown
$n=90000$ gives 99.74% probability of $0.009 \leq \hat{p} \leq 0.011$.
Answer is approximately 90000

