Point Estimation

Exercise Example

Prof Hans Georg Schaathun

Høgskolen i Ålesund

10th January 2014

Prof Hans Georg Schaathun

Point Estimation

Estimating the binomial proportion

Exercise

Suppose you are testing a system with error probability of 0.01. How many trials do you need to make your estimator \hat{p}_e fall between 0.011 and 0.009 99.75% of the time?

P(0.009
$$\leq \hat{p} \leq 0.011$$
) = 0.9975
P(0.009 $n \leq X \leq 0.011n$) = 0.9975

where $X \sim B(n, 0.01)$

Function $g(n) = P(0.009n \leq X \leq 0.011n)$

solve $g(n) = 0.9975$

g(n) = F(0.011n) - F(0.009n) where F is CDF of $X \sim (n, 0.01)$

Estimating the binomial proportion

Exercise

Suppose you are testing a system with error probability of 0.01. How many trials do you need to make your estimator \hat{p}_e fall between 0.011 and 0.009 99.75% of the time?

•
$$P(0.009 \le \hat{p} \le 0.011) = 0.9975$$

where X ∼ B(n, 0.01)

Sunction
$$g(n) = P(0.009n \le X \le 0.011n)$$

• solve
$$g(n) = 0.9975$$

9 g(n) = F(0.011n) - F(0.009n) where F is CDF of $X \sim (n, 0.01)$

Closure

- Larger $n \Rightarrow$ better estimate
 - higher probability close to the true value
- This is a toy exercise
 - get used to the estimator as a stochastic variable
 - example of how to play with numbers to get an impression
- In practice, estimating p
 - *p* is unknown
 - $n=90\,000$ gives 99.74% probability of $0.009 \leq \hat{p} \leq 0.011.$ Answer is approximately 90 000