## Point Estimation The inaccuracy of estimates

Prof Hans Georg Schaathun

Høgskolen i Ålesund

9th January 2014



Prof Hans Georg Schaathun

Point Estimation

Recall the Monte Carlo simulator.

- Test the system *n* times
  - Record the number of errors X
  - Report the error rate R = X/n
- Estimate the error probability pe



# Point Estimator

- A (point) estimator of a parameter  $\theta$ 
  - is a function of the observed data
  - 2 which can be used to estimate  $\theta$
- Write  $\hat{\theta}$  for the estimator
- It follows that
  - $\hat{\theta}$  is a stochastic variable
  - 2  $\hat{\theta} \approx \theta$  with high probability



### **Error Rate**

- Error count: *X* ∼ *B*(*n*, *p*<sub>*e*</sub>)
- Error rate: X/n
- Estimator:  $\hat{p}_e = X/n$
- $E(\hat{p}_e) = p_e$

#### Definition (Unbiased estimator)

If  $E(\hat{\theta}) = \theta$ , we say that  $\hat{\theta}$  is an unbiased estimator of  $\theta$ .



## Probability distribution

- *p̂<sub>e</sub>* is random
  - it has a variance and standard deviation σ<sub>p̂e</sub>
- Estimation error  $|\hat{p}_e p_e|$ 
  - ~ 32% of time:  $|\hat{p}_e p_e| > \sigma_{\hat{p}_e}$
  - $\sim$  4.5% of time:  $|\hat{p}_e p_e| > 2\sigma_{\hat{p}_e}$
  - $\sim$  0.25% of time:  $|\hat{p}_e p_e| > 3\sigma_{\hat{p}_e}$
- (This is assumes large numbers or normal distribution.)

#### A good estimator needs a low variance.



#### Exercise

Suppose you are testing a system with error probability of 0.01. How many trials do you need to make your estimator  $\hat{p}_e$  fall between 0.011 and 0.009 99.75% of the time?



Prof Hans Georg Schaathun

Point Estimation