Point Estimation
 The inaccuracy of estimates

Prof Hans Georg Schaathun

Høgskolen i Ålesund

9th January 2014

The Monte Carlo Experiment

Recall the Monte Carlo simulator.

- Test the system n times
- Record the number of errors X
- Report the error rate $R=X / n$
- Estimate the error probability p_{e}

Point Estimator

Definition

- A (point) estimator of a parameter θ
(1) is a function of the observed data
(2) which can be used to estimate θ
- Write $\hat{\theta}$ for the estimator
- It follows that
(1) $\hat{\theta}$ is a stochastic variable
(2) $\hat{\theta} \approx \theta$ with high probability

Error Rate

- Error count: $X \sim B\left(n, p_{e}\right)$
- Error rate: X / n
- Estimator: $\hat{p}_{e}=X / n$
- $E\left(\hat{p}_{e}\right)=p_{e}$

Definition (Unbiased estimator)

If $E(\hat{\theta})=\theta$, we say that $\hat{\theta}$ is an unbiased estimator of θ.

Probability distribution

- \hat{p}_{e} is random
- it has a variance and standard deviation $\sigma_{\hat{p}_{e}}$
- Estimation error $\left|\hat{p}_{e}-p_{e}\right|$
- $\sim 32 \%$ of time: $\left|\hat{p}_{e}-p_{e}\right|>\sigma_{\hat{p}_{e}}$
- $\sim 4.5 \%$ of time: $\left|\hat{p}_{e}-p_{e}\right|>2 \sigma_{\hat{p}_{e}}$
- $\sim 0.25 \%$ of time: $\left|\hat{p}_{e}-p_{e}\right|>3 \sigma_{\hat{p}_{e}}$
- (This is assumes large numbers or normal distribution.)

A good estimator needs a low variance.

Exercise

Exercise
 Suppose you are testing a system with error probability of 0.01. How many trials do you need to make your estimator \hat{p}_{e} fall between 0.011 and $0.00999 .75 \%$ of the time?

