The Expected Value
 The Binomial Distribution

Prof Hans Georg Schaathun

Høgskolen i Ålesund

2nd January 2014

The Binomial Distribution

$$
P(T=t)=\binom{n}{t} p^{t}(1-p)^{n-t}
$$

Problem

What is the expected value $E(T)$ where the probability distribution of T is given above.

Toy case $N=1$

- Consider a single Bernoulli trial.
- $X \sim B(1, p)$
- What is the expected value $E(X)$
- $E(X)=\sum_{x} x \cdot P(X=x)$

Outcome	X	Probability p^{\prime}	$p^{\prime} \cdot X$
Success	1	p	p
Failure	0	$1-p$	0
		Sum	p

General case $N=$?

- Binomial distribution $Y \sim B(n, p)$
- $Y=X_{1}+X_{2}+\ldots+X_{n}$
- Each $X_{i} \sim B(1, p)$
- Independent X_{i}
- $E(Y)=\sum_{i=1}^{n} E\left(X_{i}\right)=n \cdot E(X)=n \cdot p$

General case $N=$?

- Binomial distribution $Y \sim B(n, p)$
- $Y=X_{1}+X_{2}+\ldots+X_{n}$
- Each $X_{i} \sim B(1, p)$
- Independent X_{i}
- $E(Y)=\sum_{i=1}^{n} E\left(X_{i}\right)=n \cdot E(X)=n \cdot p$

Summary

- Binomial distribution $X \sim B(n, p)$
- The expected value is $E(X)=n \cdot p$

Exercise

Send a 1024-bit word over the BSC with bit error probability 0.03. What is the expected number of bit errors in the received word?

