Finding the Error Probability

Monte Carlo Simulation

Prof Hans Georg Schaathun

Høgskolen i Ålesund

20th December 2013

Decoding error

Definition (Decoding error)

A decoding error occurs when the decoder output $\hat{\mathbf{m}}$ is different from the transmitted message $\hat{\mathbf{m}}$.

- The Hamming Code is small and simple
 - able to determine the probability of decoding error analytically
- Practical coding systems can be exceedingly complex
 - defeats analysis
- How else can we determine the probability of decoding error?

Monte Carlo Simulations and Statistical estimation.

Why simulation?

- Statistics provide inferences from empirical data.
- Where do we get the empirical data?
 - ofield data real data from real life
 - simulation synthetic data simulation real life
- Field data is often a scarce resource
- Simulation synthesises data at will

Monte Carlo Simulation

Exercise

Monte Carlo Simulation

Simulator Output

- Run the simulator N times.
- Count the number of decoding errors X.
 - 0 < X < N
- We get an error rate R = X/N.

NB The error rate is not the error probability. We get back to that.

20th December 2013

Closure

Exercise

Implement a Monte Carlo Simulator for the coding system

- Implement a function to generate random message
- Implement a function to generate random noise (BSC)
- Take the encoder/decoder functions from the web pages
- Integrate the above function to a system to generate a random message, simulate transmission, and check for errors.
- Implement a simulator iterating the above integrated system, counting the number of decoding errors.
- There is a video to help you with the random generation.
- We will get back to the statistical analysis later.

